
Notes Math-1400-es31 2015 July 21

This is a summary of the concepts of di�erential calculus, from the primary perspective of the di�erential.

Di�erences

If a variable changes from the value a to the value b, then the di�erence between these two values is b− a.
More generally, if one variable quantity x changes from a to b, then another variable u may change as well,
but usually between di�erent values. Whatever the di�erence in those values is, that is the di�erence
in u as x varies from a to b. This may be denoted

∆x=b
x=au, ∆

b
au, ∆u,

depending on how explicit the notation needs to be. We will also use

u|x=b
x=a, u|

b
x=a, u|

b
a,

for the same idea.
For example, let u be 2x+ 3, and consider ∆x=5

x=4u. Calculate:

∆x=5
x=4u = ∆5

4(2x+ 3) = [2(5) + 3]− [2(4) + 3] = 13− 11 = 2.

In other words, as x varies from 4 to 5, u varies from 11 to 13, and the di�erence between these is 2.

Di�erentials

The idea behind a di�erential is that it is an in�nitely small di�erence. There are various ways to make
this idea logically precise, but we will not go into that in this applied course. (I will return to this at the
end of the course, if there is time.) In place of the uppercase Greek letter `∆' for a standard-sized (�nites-
imal) change, we use the lowercase Latin letter `d' for an in�nitely small (in�nitesimal) change. So if u
varies smoothly, then du is the di�erential of u, which more or less means ∆b

au when b− a is in�nitely
small (but not quite zero).

Although this is usually not an issue in applied situations, it s important that u be a smoothly varying

quantity, also called a smooth variable. Exactly what this means is, again, something that can be made
precise. But for now, you can think of it as meaning that, whenever the underlying varying reality chang-
es by a small amount, the variable quantity u also changes by a small amount, at a de�nite rate, with no
sudden jumps or in�nitely fast change.

Di�erences and di�erentials of linear expressions

The following rules hold exactly for di�erences:
• ∆k = 0 if k is constant;
• ∆(u+ v) = ∆u+∆v;
• ∆(ku) = k∆u if k is constant.

These equations hold for �nitesimal changes, so they also hold for in�nitesimal changes:
• dk = 0 if k is constant (the Constant Rule);
• d(u+ v) = du+ dv (the Sum Rule);
• d(ku) = k du if k is constant (the Multiple Rule).

This allows us to calculate di�erentials of linear expressions.
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For example:

d(7x) = 7 dx;

d(−5x) = −5 dx;

d(x+ 2) = dx+ d(2) = dx+ 0 = dx;

d(y − 4) = dy + d(−4) = dy + 0 = dy;

d(2t+ 3) = d(2t) + d(3) = 2 dt+ 0 = 2dt;

d(7− x) = d(−1x+ 7) = −1 dx+ 0 = −dx;

d(2x+ 3y) = d(2x) + d(3y) = 2 dx+ 3dy;

etc.

Di�erentials of more complicated expressions

There is no simple rule for di�erences of expressions like x2, or more generally for products of variables
such as uv. For di�erentials, however, we have the Product Rule:

d(uv) = v du+ u dv.

The reason for this may be seen by the following rectangle:

v


︸ ︷︷ ︸

u

This rectangle has length u and height v, so its area is uv. However, both u and v are increasing, so the
area is also increasing. (A similar picture could be drawn if one or both are decreasing instead.) The rect-
angle increases in two directions, upwards and to the right. Upwards, the increase is a strip of length u
and height dv, with an area of u dv; to the right, the increase is a strip of length v and height du, with an
area of v du. Therefore, the total change in the area, which is d(uv), is udv + v du, in accordance with the
Product Rule. (It is precisely because we re looking only at in�nitesimal changes that we can ignore the
movement in the upper right corner of the rectangle.)

Using the Product Rule, we can derive rules to handle more general expressions. I will list all of the
rules that we will need in other handouts; here I will show how some of them may be proved (assuming
the previous rules).

Suppose that v ̸= 0 and let w = u/v; then vw = u. Calculate:

d(vw) = du;

w dv + v dw = du;

v dw = du− w dv;

dw =
du− w dv

v
;

d

(
u

v

)
=

du− u
v dv

v
;

d

(
u

v

)
=

v du− udv

v2
.

The last line is the Quotient Rule.
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Consider powers of u:

d(u2) = d(uu) = udu+ udu = 2u du;

d(u3) = d(u2u) = u2 du+ ud(u2) = u2 du+ u(2udu) = u2 du+ 2u2 du = 3u2 du;

d(u4) = d(u3u) = u3 du+ u d(u3) = u3 du+ u(3u2 du) = u3 du+ 3u3 du = 4u3 du;

etc.

In general,
d
(
uk

)
= kuk−1 du

whenever k is a constant natural number.
Now consider negative powers. If k is a constant negative integer and u ̸= 0, then uku−k = 1. Calcu-

late:
d
(
uku−k

)
= d(1);

u−k d
(
uk

)
+ uk d

(
u−k

)
= 0;

u−k
(
kuk−1 du

)
+ uk d

(
u−k

)
= 0;

ku−1 du+ uk d
(
u−k

)
= 0;

uk d
(
u−k

)
= −ku−1 du;

d
(
u−k

)
= −ku−k−1 du.

Since also
d(u0) = d(1) = 0 = 0u−1 du

if u ̸= 0, the Power Rule
d
(
uk

)
= kuk−1 du

holds whenever k is a constant and the right-hand side is de�ned (at least when k is an integer, but we ll
see shortly that it holds even when k is fractional).

Now consider roots. If k is a constant natural number and k
√
u is de�ned as a real quantity, then

( k
√
u)

k
= u. Calculate:

d
(
( k
√
u)

k
)
= du;

k( k
√
u)

k−1
d( k

√
u) = du;

ku
k
√
u
d( k

√
u) = du;

d( k
√
u) =

k
√
u du

ku
.

This is the Root Rule, where in the last step we assume that u ̸= 0.
Another way to say this is that

d
(
u1/k

)
=

1

k
u

1
k
−1 du;

the Power Rule holds whenever k is a constant rational number and its right-hand side is de�ned. We may
then argue that the Power Rule holds whenever k is any constant real number, because uk is sandwiched
between the various rational powers of u. (This argument only works when u is nonnegative, but that s
the only time that uk is de�ned as a real number when k is irrational, so that s all right. The Power Rule
does still work with complex numbers, if you de�ne exponentiation of complex numbers appropriately, but
we re not going to get into that.)

We have now derived all of the rules that we will need this month; the next handout will include a list
of these rules together with some simpli�ed special cases.
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Strategy for calculating di�erentials

The general method for calculating the di�erential of an expression is to work from the outside in, revers-
ing the order of operations to �nd out which rule to use.

For example, to di�erentiate
√
x3y + x

y−3 , we �rst use the rule for addition (the Sum Rule), since the

�nal operation is addition. Then in the �rst summand, we use the rules for roots, then for multiplication,
then for powers; while in the second summand, we use the rules for division, then for subtraction, then for
constants. So:

d

(√
x3y +

x

y − 3

)
= d

(√
x3y

)
+ d

(
x

y − 3

)
=

√
(x3y) d(x3y)

2(x3y)
+

(y − 3) d(x)− (x) d(y − 3)

(y − 3)
2

=

√
x3y

(
(y) d(x3) + (x3) d(y)

)
2x3y

+
(y − 3) dx− x

(
d(y) − d(3)

)
(y − 3)

2

=

√
x3y

(
y
(
3(x)

2
d(x)

)
+ x3 dy

)
2x3y

+
(y − 3) dx− x(dy − 0)

(y − 3)
2

=

√
x3y(3x2y dx+ x3 dy)

2x3y
+

(y − 3) dx− x dy

(y − 3)
2 .

The process is messy and can be tedious, but it should be straightforward.
In Calculus, it s usually considered OK to leave an expression as above. However, you could expand it

out, simplify, and gather together the dx and dy terms:(
3
√

x3y

2x
+

1

y − 3

)
dx+

(√
x3y

2y
− x

(y − 3)
2

)
dy.

Sometimes this will be useful. In any case, it s important that this can be done; every term in the �nal
expression for a di�erential should have (as a factor) the di�erential of one (and only one) variable.

When you re doing algebra with in�nitesimals, you must treat dx, dy, and so on as complete vari-
ables in their own right. In the calculus steps, you simplify d(x2) (for example) to 2x dx, but then you
think of this expression as 2 times x times dx, and that s it. (You de�nitely do not want to think of dx as
d times x; that s not a thing.)

Derivatives

If u and v are smooth variables and dv ̸= 0, then v will change a little bit whenever u does. Another way
to say this is that u cannot change unless v does, so we may view the change in u as induced by the change
in v, as a result of the sensitivity of u to changes in v. This sensitivity is measured by the derivative of u
with respect to v:

du

dv
.

Since `derivative' is a rather generic term, this may also be called the sensitivity of u with respect to v or
(especially when v measures time) the rate of change of u with respect to v.

For example, if x = 3t2, then calculate:

dx = d(3t2);

dx = 3d(t2);

dx = 3(2t dt);

dx = 6t dt;

dx

dt
= 6t.
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That is, the derivative of 3t2 with respect to t is 6t. We sometimes write(
d

dt

)
(3t2) = 6t;

the operator d/dt means to take the di�erential (`d') and then divide by dt (`/dt'), which together means
to take the derivative with respect to t.

We can go on and �nd the derivative of the derivative:

d(dx/dt) = d(6t);

d(dx/dt) = 6 dt;

d(dx/dt)

dt
= 6.

The left-hand side here is often written `d2x/dt2', but this notation does not make literal sense in the way

that dx/dt does. A better way to write the left-hand side of the equation above is as (d/dt)
2
x, because

we ve applied the operator d/dt twice; that is,(
d

dt

)2

(3t2) =

(
d

dt

)(
d

dt

)
(3t2) = 6.

In words, the second derivative of 3t2 with respect to t is 6. (You could go on and take a third deriva-
tive, etc.)

If we re not given a formula for one variable in terms of another, we can still try to �nd the derivative
as long as we re given an equation relating them. For example, suppose that x2 + y2 = 1. Then calculate:

d(x2 + y2) = d(1);

d(x2) + d(y2) = 0;

2xdx+ 2y dy = 0;

2y dy = −2x dx;

dy = −x

y
dx;

dy

dx
= −x

y
.

This is called an implicit derivative; although we ve found the derivative of y with respect to x (assum-
ing that y ̸= 0), the expression for it involves both x and y and is not explicitly in terms of x alone.

Derivatives of functions

If we apply a function f to a variable x, then we may give a name to the result and say, for example, that

y = f(x).

If we had an explicit formula for f , then we could di�erentiate both sides of this equation and �nd that dy
is some expression multiplied by dx. Even without a formula for f , if we assume that f is a �xed smooth
function (another concept that can be made precise), then dy is the product of dx and the result of ap-
plying some other smooth function f ′. That is,

d
(
f(x)

)
= f ′(x) dx

if f(x) depends only on x. This function f ′ is called the derivative of f , because f ′(x) is the derivative of
f(x) with respect to x. Then the derivative of f ′, denoted f ′′, is the second derivative of f , etc.
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For example, if f(x) = x2, then calculate:

d
(
f(x)

)
= d(x2);

f ′(x) dx = 2xdx;

f ′(x) = 2x.

Then for the second derivative, I go on:
d
(
f ′(x)

)
= d(2x);

f ′′(x) dx = 2dx;

f ′′(x) = 2.

And you could go further.
We can take the derivative of one quantity only with respect to another quantity, but we can take the

derivative of a function in an absolute sense; in symbols, dy/dx is the derivative of y with respect to x,
while f ′ is the derivative of f , period. Of course, the relationship between these ideas is that

f ′(x) =
d
(
f(x)

)
dx

;

on the left-hand side, we take the derivative of f and then evaluate this at x, while on the right-hand side,
we evaluate f at x and then take the derivative of this respect to that same x. People will often mix up
the notations for derivatives of quantities and functions, writing `df/dx', `y′', and the like. You can often
get away with this, because the context make it clear what is meant, but I will avoid this abuse of nota-
tion. (The textbook, however, does this a lot.)

There is nothing special about the quantity x; in general,

d
(
f(u)

)
= f ′(u) du

whenever f is a �xed smooth function and u is a smooth variable. For example,

d
(
f(x2)

)
= f ′(x2) d(x2) = f ′(x2)(2x dx) = 2xf ′(x2) dx,

which exists even if you don t know which smooth function f is. If you put in g(x) for u, express f
(
g(x)

)
as (f ◦ g)(x), and divide both sides by dx, then you get

(f ◦ g)′(x) = f ′(g(x))g′(x);
if instead you write f(u) as y, express f ′(u) as dy/du, and divide both sides by dx, then you get

dy

dx
=

dy

du

du

dx
.

People make a big deal out of these two equations, calling them (both!) the Chain Rule, but in practice
you never need to use this; you only need to apply the rules for di�erentials, divide when you want to get
derivatives, and apply the normal rules of algebra. (In a rigorous development, there is a theorem to be
proved here, but we don t need to worry about it.)
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Exercises on di�erences and di�erentials

1. Find ∆2
1(5− x2). 2. Find ∆−1

−2(5− x2). 3. Find ∆4
1(3x

2). 4. Find ∆5
2(3x

2).

5. Refer to Exercise 2.4.79 on page 145 of the o�cial textbook. Find the change in revenue if the number of
car seats sold changes from 1000 to 1050.

6. Refer to Exercise 2.4.80 on page 146 of the o�cial textbook. Find the change in pro�t if the number of
car seats sold changes from 800 to 850.

7. Find d(−5). 8. Find d(9). 9. Find d(3x− 7). 10. Find d(4− 6x).

11. Find d(2− 3x2). 12. Find d(2x2 + 8). 13. Find d(y2 + 6y − 10). 14. Find d(t2 + 4t+ 7).

15. Find the di�erential of 2x2 − 7x+ 3. 16. Find the di�erential of 2x2 + 5x+ 1.

17. Find d(−P 2 + 4P − 9). 18. Find d(−z2 + 9z − 2). 19. Find d(2r3 + 1). 20. Find d(−2a3 + 5).

21. Find d

(
4 +

4

x

)
. 22. Find d

(
6

x
− 2

)
. 23. Find d(5 + 3

√
x). 24. Find d(3− 7

√
x).

25. Find d
(
10
√
n+ 5

)
. 26. Find d

(
16
√
k + 9

)
. 27. Find d

(
3x

x+ 2

)
. 28. Find d

(
5x

3 + x

)
.

29. Find d(3x+ 5y). 30. Find d(−2x+ 6y). 31. Find d(3p2 − 4q − 18). 32. Find d(2s3 + 5t− 2).

33. Find the di�erential of 2xy + 3x2. 34. Find the di�erential of 3xy − 2y2.

35. Find d
(
(x+ 3)

2)
. 36. Find d

(
(x− 6)

3)
. 37. Find d

(
(2t+ 5)

3)
. 38. Find d

(
(3s− 7)

5)
.

39. Find d
(
(5− 2h)

4)
. 40. Find d

(
(9− 5q)

2)
. 41. Find d

(
(4 + 0.2x)

5)
. 42. Find d

(
(6− 0.5x)

4)
.

43. Find d
(
(3α2 + 5)

5
)
. 44. Find d

(
(5β2 − 3)

6
)
. 45. Find d

(
(2x− 5)

1/2
)
. 46. Find d

(
(4x+ 3)

1/2
)
.

47. Find d
(
(x4 + 1)

−2
)
. 48. Find d

(
(x5 + 2)

−3
)
. 49. Find d

(
2x3(x2 − 2)

)
. 50. Find d

(
5x2(x3 + 2)

)
.

51. Find the di�erential of (u− 3)(2u− 1). 52. Find the di�erential of (3v + 2)(4v − 5).

53. Find d

(
x

x− 3

)
. 54. Find d

(
3x

2x+ 1

)
. 55. Find d

(
2x+ 3

x− 2

)
. 56. Find d

(
3x− 4

2x+ 3

)
.

57. Find the di�erential of (x2 + 1)(2x− 3). 58. Find the di�erential of (3x+ 5)(x2 − 3).

59. Find the di�erential of (0.4x+ 2)(0.5x− 5). 60. Find the di�erential of (0.5x− 4)(0.2x+ 1).

61. Find the di�erential of
x2 + 1

2x− 3
. 62. Find the di�erential of

3x+ 5

x2 − 3
.

63. Find the di�erential of (x2 + 2)(x2 − 3). 64. Find the di�erential of (x2 − 4)(x2 + 5).

65. Find the di�erential of
x2 + 2

x2 − 3
. 66. Find the di�erential of

x2 − 4

x2 + 5
.

67. If f is a �xed function, �nd d
(
f(2x+ 3)

)
. 68. If f is a �xed function, �nd d

(
f(4x+ 2)

)
.

69. If g is a �xed function, �nd the di�erential of g(2t2 + 3).

70. If k is a �xed function, �nd the di�erential of k(4y3 + 2).
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Answers to odd-numbered exercises

1. −3 3. 45

5. $437.50

7. 0 9. 3 dx

11. −6xdx 13. (2y + 6) dy

15. (4x− 7) dx

17. (−2P + 4) dP 19. 6r2 dr

21. − 4

x2
dx 23.

3
√
x

2x
dx

25.
5
√
n+ 5

n+ 5
dn 27.

6

(x+ 2)
2 dx

29. 3 dx+ 5dy 31. 6pdp− 4 dq

33. (2y + 6x) dx+ 2x dy

35. 2(x+ 3) dx 37. 6(2t+ 5)
2
dt

39. −8(5− 2h)
3
dh 41. (4 + 0.2x)

4
dx

43. 30α(3α2 + 5)
4
dα 45. (2x− 5)

−1/2
dx

47. −8x3(x4 + 1)
−3

dx 49. 2x2(5x2 − 6) dx

51. (4u− 7) du

53. − 3

(x− 3)
2 dx 55. − 7

(x− 2)
2 dx

57. 2(3x2 − 3x+ 1) dx

59. (0.4x− 1) dx

61.
2(x2 − 3x− 1)

(2x− 3)
2 dx

63. 2x(2x3 − 1) dx

65. − 10x

(x2 − 3)
2 dx

67. 2 f ′(2x+ 3) dx

69. 4t g′(2t2 + 3) dt
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