
Notes Math-1600-es31 2012 October 22

Many calculations in calculus are easier to do using di�erentials. Furthermore, di�eren-
tials and the related di�erential forms are often used in applications, especially (but not
only) to physics. The o�cial textbook covers di�erentials, but incompletely and only in
one minor application. It then uses di�erentials again much later (mostly in material for
Calculus 2 and 3), but they are useful much earlier. So I will make heavy use of them.

Notation and terminology
If y is a variable quantity, then dy is the di�erential of y. You can think of dy as in-
dicating an in�nitely small (in�nitesimal) change in the value of y, or the amount by
which y changes when an in�nitesimal change is made. A precise de�nition is at the end
of these notes, but you are not responsible for knowing that; what you need to know is
how to use di�erentials.

Note that dy is not d times y, and d is also not exactly a function of y. Rather, y
(being a variable quantity) should itself be a function of some other quantity x, and dy
is also a function of a sort; so d is an operator : something that turns one function into
another function. (However, an expression like A dy does involve multiplication: it is A
times the di�erential of y.)

We often divide one di�erential by another; for example, dy/dx is the result of di-
viding the di�erential of y by the di�erential of x. The textbook introduces this notation
early to stand for the derivative of y with respect to x, and indeed it is that; but what
the book doesn t tell you is that dy/dx literally is dy divided by dx. (Unfortunately,
d2y/dx2, the second derivative, is not literally d2y divided by dx2, at least not in any
general or useful way that I know.)

Fundamental theorem
The most important fact about di�erentials is this: If f is a di�erentiable function, then

df(u) = f ′(u) du.

That is, the di�erential of f(u) equals f ′(u) times the di�erential of u, where f ′ is the
derivative of f (as a function). This fact not only shows the relationship between di�er-
entials and derivatives, but also (because u could be any quantity) it encapsulates the
Chain Rule in di�erential form. The Chain Rule is an important principle in calculus,
which is often di�cult to learn how to use; but with di�erentials it is easy.

In particular, if y = f(x), then

dy

dx
=

df(x)
dx

=
f ′(x) dx

dx
= f ′(x),

so dy divided by dx really is the derivative.
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For example, suppose that you have discovered (say from the de�nition as a limit)
that the derivative of f(x) = x2 is f ′(x) = 2x. Then this fact can be expressed in di�er-
ential form:

(*)d(x2) = 2x dx.

Conversely, if (by performing a calculation with di�erentials) you discover the equa-
tion (*) above, then you know the derivative of f as well:

f ′(x) =
df(x)

dx
=

d(x2)
dx

=
2xdx

dx
= 2x.

Whichever of these facts you discover �rst, once you know them, you know something
even more general:

d(u2) = 2udu.
(The power to derive this from equation (*) is the Chain Rule.) The value of this is that
u can be any expression whatsoever; for example, if u = x2 again, then

d(x4) = d
�
(x2)

2
�

= 2(x2) d(x2) = 2x2(2x dx) = 4x3 dx.

So now you have learnt a new derivative.

Rules of di�erentiation
Every theorem about derivatives of functions may also be expressed as a theorem about
di�erentials. Here are the most common rules:
• The Constant Rule: dk = 0 if k is constant.
• The Sum Rule: d(u + v) = du + dv.
• The Translate Rule: d(u + k) = du if k is constant.
• The Di�erence Rule: d(u− v) = du− dv.
• The Product Rule: d(uv) = v du + udv.
• The Multiple Rule: d(ku) = k du if k is constant.
• The Quotient Rule: d

�
u

v

�
=

v du− u dv

v2
.

• The Power Rule: d
�
uk� = kuk−1 du if k is constant.

• The Root Rule: d( k
√

u) =
k
√

udu

ku
if k is constant.

Of these, only the Constant Rule, the Sum Rule, the Product Rule, and the Power Rule
are absolutely necessary, since every other expression built out of the operations in the
rules above can be built out of the operations in these four rules. However, it is often
handy to use all of these rules, even the Root Rule (which is not in the textbook). It is
up to you how many of these rules to learn.

In addition, every time that you learn the derivative of a new function, you learn a
new rule for di�erentials, by applying the Chain Rule to that function. We have already
seen an example of this: applying the Chain Rule to the function f(x) = x2 gives the
special case of the Power Rule for k = 2. Here are a few other functions whose deriva-
tives you will learn, expressed as rules for di�erentials:
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• d(expu) = exp u du, or d(eu) = eu du.
• d(ln u) =

du

u
.

• d(sinu) = cosu du.
• d(cosu) = − sin udu.
• d(arctanu) =

du

u2 + 1
.

And more!
Notice that every one of these rules turns the di�erential on the left into a sum of

terms (possibly only one term, or none in the case of the Constant Rule), each of which
is an ordinary expression multiplied by a di�erential (or something algebraically equiva-
lent to this). If, when you are calculating the di�erential of an expression, your result at
any stage is not like this, then you have made a mistake!

Using di�erentials
The main technique for using di�erentials is simply to take the di�erential of both sides
of an equation. However, you may only do this to an equation that holds generally , but
not to an equation that holds only for particular values of the variables. (Ultimately,
this is because d is an operator, not a function, so it must be applied to entire functions,
not only to particular values of those functions.)

The simplest case is an equation such as y = ex2 , when we want the derivative of y
with respect to x. So:

y = ex2
= exp x2;

dy = d(exp x2) = exp x2 d(x2) = exp x2 · 2xdx = 2x expx2 dx;
dy

dx
= 2x exp x2 = 2xex2 .

Now we have the derivative. If we want the second derivative, then we do this again:

dy/dx = 2xex2
= 2x exp x2;

d(dy/dx) = d(2x exp x2) = exp x2 d(2x) + 2xd(exp x2)

= exp x2 · 2 dx + 2x · 2x expx2 dx = (2 exp x2 + 4x2 exp x2) dx;

(d/dx)2y =
d(dy/dx)

dx
= 2 exp x2 + 4x2 exp x2 = 2ex2

+ 4x2ex2 .

Now we have the second derivative (also written d2y/dx2).
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The previous example began with an equation solved for y. But we don t need this;
suppose instead that we have y5 + x2 = x5 + y (which cannot be solved for either vari-
able using the usual algebraic operations of addition, subtraction, multiplication, divi-
sion, powers, and roots). Undaunted, we forge ahead anyway:

y5 + x2 = x5 + y;
d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;
5y5−1 dy + 2x2−1 dx = 5x5−1 dx + dy;

5y4 dy − dy = 5x4 dx− 2xdx;
(5y4 − 1) dy = (5x4 − 2x) dx;

dy

dx
=

5x4 − 2x

5y4 − 1
.

This process is called implicit di�erentiation.
The second derivative is a little simpler at �rst (or it would be if we didn t have to

use the Quotient Rule!), but there is a twist at the end:

dy/dx =
5x4 − 2x

5y4 − 1
;

d(dy/dx) = d
�

5x4 − 2x

5y4 − 1

�
=

(5y4 − 1) d(5x4 − 2x)− (5x4 − 2x) d(5y4 − 1)

(5y4 − 1)2

=
(5y4 − 1)(20x3 − 2) dx− (5x4 − 2x)(20y3) dy

(5y4 − 1)2

=
20x3 − 2
5y4 − 1

dx− 20y3(5x4 − 2x)

(5y4 − 1)2
dy;

(d/dx)2y =
d(dy/dx)

dx
=

20x3 − 2
5y4 − 1

− 20y3(5x4 − 2x)

(5y4 − 1)2
dy

dx

=
20x3 − 2
5y4 − 1

− 20y3(5x4 − 2x)

(5y4 − 1)2
5x4 − 2x

5y4 − 1

(which could be simpli�ed further). Notice that I substitute the known expression for
dy/dx in the last step.

Another handy application of di�erentials is the case where both quantities x and y
may be expressed as functions of some other quantity t. If we start with the same equa-
tion as above, then this will give us an equation relating the derivatives with respect
to t:
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y5 + x2 = x5 + y;
d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;
5y5−1 dy + 2x2−1 dx = 5x5−1 dx + dy;

5y4 dy

dt
+ 2x

dx

dt
= 5x4 dx

dt
+

dy

dt
.

Then if we have information about one or both of these derivatives, then this will often
give us useful information to solve a problem. This situation is called related rates,
since derivatives can be viewed as rates of change (especially derivatives with respect to
time t, although the t in the equation above doesn t have to be time).

Appendix: De�nitions and proofs
Since d is an operator, it must be applied to a function. If f is a function, we de�ne
the di�erential of f to be a function of two variables; but we write df(x)h instead of
df(x, h) for the value of this function at x and h. Its de�nition is:

df(x)h = f ′(x)h.

Notice that the right-hand side is a product, the result of multiplying f ′(x) and h, while
the left-hand side is not a product; it only looks like a product because of the unusual
way of writing df as a function of two variables. Also notice that df(x)h is de�ned if
and only if f is di�erentiable at x, regardless of the value of h.

Now, we have been applying d to variables like x and y and to expressions built out
of them. So in order to make sense of this, we must be tacitly assuming that these ex-
pressions are functions of some quantity. If all of the quantities in an application of cal-
culus may be expressed as functions of one quantity x, then we identify such a quanti-
ty x and call it the independent variable. (In multivariable calculus, studied in Cal-
culus 3, you may need several independent variables.) So, if y is any of these quantities,
then we have y = f(x) for some function f (possibly a constant function or an unknown
function, but still in principle some function).

If y = f(x), then when we write dy, we simply mean df(x), where df is the func-
tion of two variables de�ned above. This leaves dy as a function of one variable, the
variable written as h above. In all of our applications of di�erentials, when we write
equations between di�erentials, we are really writing equations between functions of h,
which we never bother to apply to any particular value. (Any expression that does not
contain a di�erential is constant as a function of h.)

In particular, if I is the identity function I(x) = x, then I ′(x) = 1 for all x, so we
have dI(x)h = h. So,

df(x)h = f ′(x)h = f ′(x) dI(x)h;
substituting y for f(x) and x for I(x), we have

dy = f ′(x) dx
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as an equation between functions of h, so

dy

dx
= f ′(x)

as expected. (That is, dy/dx is a constant function of h, whose value is f ′(x).)
More generally, if u = g(x), so that (f ◦ g)(x) = f

�
g(x)

�
= f(u), then

d(f ◦ g)(x)h = (f ◦ g)′(x)h = f ′
�
g(x)

�
g′(x)h = f ′

�
g(x)

�
dg(x)h,

where I have used the Chain Rule to �nd (f ◦ g)′. Substituting f(u) for (f ◦ g)(x) and u
for g(x), we have

df(u) = f ′(u) du

as an equation between functions of h. This is the Chain Rule in di�erential form. An-
other way to look at this is that the choice of independent variable is arbitrary; we could
use u just as well as x (at least if we work only with quantities that may be expressed as
functions of u).

Every other rule for di�erentials follows from the corresponding rule for derivatives
by substituting appropriate expressions and multiplying by dx. For example, from

(f + g)′(x) = f ′(x) + g′(x),

we write u for f(x) and v for g(x), so that u + v = (f + g)(x). Then this rule for deriva-
tives becomes

d(u + v)
dx

=
du

dx
+

dv

dx
,

which gives the corresponding rule for di�erentials:

d(u + v) = du + dv.

All of the others may be proved similarly.
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