
Notes Math-1600-es31 2014 October 20

Many calculations in calculus are easier to do using di�erentials. Furthermore, di�erentials and the related
di�erential forms are often used in applications, especially (but not only) to physics. The o�cial textbook
covers di�erentials, but incompletely and only in one minor application. It then uses di�erentials again
later (mostly in material for Calculus 2 and 3), but they are useful much earlier. So I will make heavy use
of them.

Notation and terminology
If y is a variable quantity, then dy is the di�erential of y. You can think of dy as indicating an in�nite-
ly small (in�nitesimal) change in the value of y, or the amount by which y changes when an in�nitesimal
change is made. A precise de�nition is at the end of these notes, but you will not be tested directly on
that; what you need to know is how to use di�erentials.

Note that dy is not d times y, and d is also not exactly a function of y. Rather, y (being a variable
quantity) should itself be a function of some other quantity x, and dy is also a function of a sort; so d is
an operator : something that turns one function into another function. However, an expression like Ady
does involve multiplication: it is A times the di�erential of y.

We often divide one di�erential by another; for example, dy/dx is the result of dividing the di�eren-
tial of y by the di�erential of x. The textbook introduces this notation early to stand for the derivative
of y with respect to x, and indeed it is that; but what the book doesn t tell you is that dy/dx literally is
dy divided by dx. Unfortunately, d2y/dx2, the second derivative, is not literally d2y = d(dy) divided by
dx2 = (dx)

2; for this reason, I prefer the notation (d/dx)
2
y, meaning (d/dx)(d/dx)y = (d/dx)(dy/dx) =

d(dy/dx)/dx.

The Chain Rule
The most important fact about di�erentials is this: If f is a di�erentiable function, then

df(u) = f ′(u) du.
That is, the di�erential of f(u) equals f ′(u) times the di�erential of u, where f ′ is the derivative of f (as
a function). This fact not only shows the relationship between di�erentials and derivatives, but also (be-
cause u could be any quantity) it encapsulates the Chain Rule in di�erential form. The Chain Rule is an
important principle in calculus, which is often di�cult to learn how to use; but with di�erentials it is easy.

In particular, if y = f(x), then
dy

dx
=

df(x)

dx
=

f ′(x) dx
dx

= f ′(x),

so dy divided by dx really is the derivative.
For example, suppose that you have discovered (say from the de�nition as a limit) that the derivative

of f(x) = x2 is f ′(x) = 2x. Then this fact can be expressed in di�erential form:
(*)d(x2) = df(x) = f ′(x) dx = 2xdx.

Conversely, if (by performing a calculation with di�erentials) you discover the equation (*) above, then
you know the derivative of f as well:

f ′(x) =
df(x)

dx
=

d(x2)

dx
=

2xdx

dx
= 2x.

Whichever of these facts you discover �rst, once you know them, you know something even more general:
d(u2) = 2udu.

(The power to derive this from equation (*) is the Chain Rule.) The value of this is that u can be any ex-
pression whatsoever; for example, if u = x2 again, then

d(x4) = d
�
(x2)

2
�
= 2(x2) d(x2) = 2x2(2x dx) = 4x3 dx.

So now you have learnt a new derivative, without having to calculate it from scratch.
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Rules of di�erentiation
Every theorem about derivatives of functions may also be expressed as a theorem about di�erentials. Here
are the most common rules:
• The Constant Rule: dk = 0 if k is constant.
• The Sum Rule: d(u+ v) = du+ dv.
• The Translate Rule: d(u+ k) = du if k is constant.
• The Di�erence Rule: d(u− v) = du− dv.
• The Product Rule: d(uv) = v du+ udv.
• The Multiple Rule: d(ku) = k du if k is constant.
• The Quotient Rule: d

�
u

v

�
=

v du− u dv

v2
.

• The Power Rule: d
�
uk� = kuk−1 du if k is constant.

• The Root Rule: d( k
√
u) =

k
√
udu

ku
if k is constant.

Of these, only the Constant Rule, the Sum Rule, the Product Rule, and the Power Rule are absolutely
necessary, since every other expression built out of the operations in the rules above can be built out of
the operations in these four rules. However, it is often handy to use all of these rules, even the Root Rule
(which is not in the textbook). It is up to you how many of these rules to learn.

In addition, every time that you learn the derivative of a new function, you learn a new rule for di�er-
entials, by applying the Chain Rule to that function. We have already seen an example of this: applying
the Chain Rule to the function f(x) = x2 gives the special case of the Power Rule for k = 2. Here are a
few other functions whose derivatives you will learn, expressed as rules for di�erentials:
• d(eu) = eu du.
• d(lnu) =

du

u
.

• d(sinu) = cosu du.
• d(cosu) = − sinudu.
• d(arctanu) =

du

u2 + 1
.

And more!
Notice that every one of these rules turns the di�erential on the left into a sum of terms (possibly on-

ly one term, or none in the case of the Constant Rule), each of which is an ordinary expression multiplied
by a di�erential (or something algebraically equivalent to this). If, when you are calculating the di�eren-
tial of an expression, your result at any stage is not like this, then you have made a mistake!

Using di�erentials
The main technique for using di�erentials is simply to take the di�erential of both sides of an equation.
However, you may only do this to an equation that holds generally , but not to an equation that holds only
for particular values of the variables. (Ultimately, this is because d is an operator, not a function, so it
must be applied to entire functions, not only to particular values of those functions.)

The simplest case is an equation such as y = ex
2 , when we want the derivative of y with respect to x.

So:
y = ex

2 ;
dy = d

�
ex

2
�
= ex

2

d(x2) = ex
2 · 2xdx = 2xex

2

dx;
dy

dx
= 2xex

2 .

Page 2 of 4



Now we have the derivative. If we want the second derivative, then we do this again:

dy/dx = 2xex
2 ;

d(dy/dx) = d
�
2xex

2
�
= ex

2

d(2x) + 2x d
�
ex

2
�

= ex
2 · 2 dx+ 2x · 2xex2

dx =
�
2ex

2

+ 4x2ex
2
�
dx;

(d/dx)
2
y =

d(dy/dx)

dx
= 2ex

2

+ 4x2ex
2 .

Now we have the second derivative (also written d2y/dx2).
The previous example began with an equation solved for y. But we don t need this; suppose instead

that we have y5 + x2 = x5 + y (which cannot be solved for either variable using the usual algebraic oper-
ations of addition, subtraction, multiplication, division, powers, and roots). Undaunted, we forge ahead
anyway:

y5 + x2 = x5 + y;
d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;
5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4 dy − dy = 5x4 dx− 2xdx;
(5y4 − 1) dy = (5x4 − 2x) dx;

dy

dx
=

5x4 − 2x

5y4 − 1
.

This process is called implicit di�erentiation.
The second derivative is a little simpler at �rst (or it would be if we didn t have to use the Quotient

Rule!), but there is a twist at the end:

dy/dx =
5x4 − 2x

5y4 − 1
;

d(dy/dx) = d

�
5x4 − 2x

5y4 − 1

�
=

(5y4 − 1) d(5x4 − 2x)− (5x4 − 2x) d(5y4 − 1)

(5y4 − 1)
2

=
(5y4 − 1)(20x3 − 2) dx− (5x4 − 2x)(20y3) dy

(5y4 − 1)
2

=
20x3 − 2

5y4 − 1
dx− 20y3(5x4 − 2x)

(5y4 − 1)
2 dy;

(d/dx)
2
y =

d(dy/dx)

dx
=

20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

dy

dx

=
20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

5x4 − 2x

5y4 − 1

(which could be simpli�ed further). Notice that I substitute the known expression for dy/dx in the last
step.

Another handy application of di�erentials is the case where both quantities x and y may be expressed
as functions of some other quantity t. If we start with the same equation as above, then this will give us
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an equation relating the derivatives with respect to t:

y5 + x2 = x5 + y;
d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;
5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4
dy

dt
+ 2x

dx

dt
= 5x4 dx

dt
+

dy

dt
.

If we have information about one or both of these derivatives, then this equation will often give us useful
information to solve a problem. This situation is called related rates, since derivatives can be viewed as
rates of change (especially derivatives with respect to time t, although the t in the equation above doesn t
have to be time).

Appendix: De�nitions and proofs
The operator d is applied directly to a variable quantity rather than to a function in the usual sense. That
is, we talk about dy rather than df , and while we do use df(x), that is just because f(x) is a variable
quantity if x is. That is, df(x) means d

�
f(x)

�
.

So �rst, I need to formalize the concept of a variable quantity. If we choose a speci�c variable, which
we call the independent variable, that every variable quantity can be expressed as a function of, then we
can formalize each quantity as its corresponding function. But the choice of independent variable can be
fairly arbitrary, and it s not always clear that one always exists either.

So, let us instead formalize a variable quantity y as an operation that, given a variable x such that
y = f(x) for some function f (with domain the set of all possible values of x), returns this function. To
have a notation, I will write this function f as yx. That is, yx is the function that tells how y varies with x.
We can add, multiply, and otherwise perform algebraic operations on these quantities, using (y + z)x =
yx + zx and so on, and the usual rules of algebra apply. We can even apply functions to quantities to get
new quantities: g(y)x = g ◦ yx. Whenever you apply Algebra in a situation where the values of the vari-
ables are allowed to in fact vary, you cannot say that the variables stand for individual real numbers, but
instead this yx stu� is one way to formalize what is going on.

Then dy becomes another quantity, de�ned so that (dy)x = yx
′ if this exists. That is, if y = f(x),

then (dy)x = f ′. While yx tells how y varies with x, (dy)x tells how quickly y varies with x. Since x is
the identity function of itself, xx is the identity function I, and (dx)x is the derivative of I, the constant
function with value 1 (which is usually also written 1). If y = f(x) (so that yx = f), then (dy)x = f ′ = f ,
while (f ′(x) dx)x = (f ′ ◦ I)1 = f ′ too.

This is not enough to conclude that dy = f ′(x) dx, because what if we use a di�erent independent
variable in place of x? Then the Chain Rule rescues us; if y = g(u) and x = h(u), so that g = f ◦ h when
y = f(x), then (dy)u = g′ = (f ◦ h)′, while (f ′(x) dx)u = (f ′ ◦ h)h′. The Chain Rule says precisely that
these are equal.

The point of all of this is that you never need to pick an independent variable; the de�nitions here
incorporate all possible independent variables at once. This is a common trick in abstract mathematics; if
you know how a thing is supposed to work out in various contexts, then you simply de�ne it to be a thing
that works how it is supposed to. As long as the working is uniquely determined by the data given, this is
a valid and precise de�nition.

At this point, all of the properties of di�erentials follow directly from the corresponding properties of
derivatives. And we can recover the derivatives by dividing the di�erentials. As we do so, we can apply
the usual rules of algebra to di�erentials, and it all works out!
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