
Notes Math-1600-es31 2015 O
tober 19

Given any fun
tion f and a number c in the domain of f , the di�eren
e quotient of f at c is a fun
-

tion f̃c, given by

f̃c(h) =
f(c+ h)− f(c)

h
.

Note that f̃c is not de�ned at 0. (In general, it s de�ned at any value h su
h that h 6= 0 and f is de�ned at

c+ h.) The derivative of f at c is the limit of f̃c approa
hing 0:

f ′(c) = lim
h→0

f̃c(h) = lim
h→0

f(c+ h)− f(c)

h
.

(When this exists, we say that f is di�erentiable at c.) This is the usual de�nition, ex
ept that people

usually don t bother to give a name to f̃c.
Be
ause limits are 
losely related to 
ontinuity, it s possible to give a de�nition of the derivative based

on 
ontinuity. We extend the de�nition of f̃c like this:

f̃c(h) =







f(c+ h)− f(c)

h
for h 6= 0,

f ′(c) for h = 0.

If there exists a number f ′(c) that makes this fun
tion 
ontinuous at 0, then that number is the derivative

of f at c; if there isn t, then this derivative doesn t exist and f is not di�erentiable at c. As it is, this is
just the usual de�nition stated with di�erent terminology. Now I ll do a little algebra on f̃c: if h 6= 0 and

f is de�ned at c+ h, then

f̃c(h) =
f(c+ h)− f(c)

h
,

h f̃c(h) = f(c+ h)− f(c),

h f̃c(h) + f(c) = f(c+ h),

f(c+ h) = f(c) + f̃c(h)h;

if h = 0, then this equation is still true as long as f̃c is de�ned at 0, sin
e then it just says that f(c) =
f(c). So another way to de�ne the derivative is to say that f is di�erentiable at c if there exists a fun
tion

f̃c that is 
ontinuous at 0 and satis�es the last equation above (for all h su
h that f is de�ned at c+ h),
and then f ′(c) = f̃c(0).

This is useful, be
ause having the entire fun
tion f̃c 
an help with proving theorems about deriva-

tives, and in fa
t the general strategy is to apply the equation for f(c+ h). For example, to prove that fg
is di�erentiable wherever f and g are, with

(fg)
′

(c) = f ′(c) g(c) + f(c) g′(c),

I ll use f̃c and g̃c along with the limit de�nition of (fg)
′

:

(fg)
′

(c) = lim
h→0

(fg)(c+ h)− (fg)(c)

h
= lim

h→0

f(c+ h) g(c+ h)− f(c) g(c)

h

= lim
h→0

Ä

f(c) + f̃c(h) h
ä Ä

g(c) + g̃c(h) h
ä

− f(c) g(c)

h

= lim
h→0

f(c) g(c) + f(c) g̃c(h)h+ f̃c(h)h g(c) + f̃c(h)h g̃c(h)h− f(c) g(c)

h

= lim
h→0

f̃c(h) g(c)h+ f(c) g̃c(h)h+ f̃c(h) g̃c(h)h
2

h
= lim

h→0

Ä

f̃c(h) g(c) + f(c) g̃c(h) + f̃c(h) g̃c(h) h
ä

= f̃c(0) g(c) + f(c) g̃c(0) + f̃c(0) g̃c(0) 0 = f ′(c) g(c) + f(c) g′(c) + f ′(c) g′(c) 0

= f ′(c) g(c) + f(c) g′(c).
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(To evaluate the limit near the end, we need f̃c and g̃c to be 
ontinuous at 0.) This is not mu
h simpler

than the book s proof (although I used smaller steps), but it s a little more straightforward, without the

step where you add and subtra
t something without 
learly knowing why it will help.

Similarly, we 
an prove the Chain Rule right away: if g is di�erentiable at c and f is di�erentiable

at g(c), then f ◦ g is di�erentiable at c and

(f ◦ g)
′

(c) = f ′

Ä

g(c)
ä

g′(c).

I ll prove this using g̃c and f̃g(c):

(f ◦ g)
′

(c) = lim
h→0

(f ◦ g)(c+ h)− (f ◦ g)(c)

h
= lim

h→0

f
Ä

g(c+ h)
ä

− f
Ä

g(c)
ä

h

= lim
h→0

f
Ä

g(c) + g̃c(h) h
ä

− f
Ä

g(c)
ä

h
= lim

h→0

f
Ä

g(c)
ä

+ f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)h− f
Ä

g(c)
ä

h

= lim
h→0

f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)h

h
= lim

h→0

(

f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)
)

= f̃g(c)
Ä

g̃c(0) 0
ä

g̃c(0) = f̃g(c)
Ä

g′(c) 0
ä

g′(c) = f̃g(c)(0) g
′(c)

= f ′

Ä

g(c)
ä

g′(c).

Now the proof is not only straightforward (or as straightforward as something so abstra
t 
an be), but

also it 
an be done immediately and rigorously without postponing things until the end of the 
hapter.

This de�nition of derivative will be handy for some other proofs later on, su
h as for the Mean Value

Theorem.

Appendix: All of the theorems

Here are 
omplete statements of all of the basi
 rules of di�erentiation in the notation of derivatives of

fun
tions:

• Constant Rule: If f is a 
onstant fun
tion, then f is di�erentiable at any number c and f ′(c) = 0.
• Sum Rule: If f and g are di�erentiable at c, then so is f + g and

(f + g)
′

(c) = f ′(c) + g′(c).

• Di�eren
e Rule: If f and g are di�erentiable at c, then so is f − g and

(f − g)
′

(c) = f ′(c)− g′(c).

• Multiple Rule: If f is di�erentiable at c and k is a 
onstant, then kf is also di�erentiable at c and

(kf)
′

(c) = k f ′(c).

• Produ
t Rule: If f and g are di�erentiable at c, then so is fg and

(fg)
′

(c) = f ′(c) g(c) + f(c) g′(c).

• Quotient Rule: If f and g are di�erentiable at c and g(c) 6= 0, then f/g is also di�erentiable at c and

(f/g)
′

(c) =
f ′(c) g(c)− f(c) g′(c)

g(c)
2 .

• Power Rule: If f is the power fun
tion with exponent n (so f(x) = xn
for all x), then f is di�eren-

tiable at any number c (unless c = 0 and n < 1) and f ′(c) = n cn−1
.

• Chain Rule: If g is di�erentiable at c and f is di�erentiable at g(c), then f ◦ g is di�erentiable at c
and

(f ◦ g)
′

(c) = f ′

Ä

g(c)
ä

g′(c).

Ea
h of these 
an be proved by applying the de�nition of derivative in terms of limits for the derivative

that we want to prove exists, the de�nition of derivative in terms of 
ontinuity for the derivatives that we

already know exist (if any), and (ex
ept for the Power Rule) basi
 algebrai
 simpli�
ation.
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