
Notes Math-1600-es31 2015 Otober 19

Given any funtion f and a number c in the domain of f , the di�erene quotient of f at c is a fun-

tion f̃c, given by

f̃c(h) =
f(c+ h)− f(c)

h
.

Note that f̃c is not de�ned at 0. (In general, it s de�ned at any value h suh that h 6= 0 and f is de�ned at

c+ h.) The derivative of f at c is the limit of f̃c approahing 0:

f ′(c) = lim
h→0

f̃c(h) = lim
h→0

f(c+ h)− f(c)

h
.

(When this exists, we say that f is di�erentiable at c.) This is the usual de�nition, exept that people

usually don t bother to give a name to f̃c.
Beause limits are losely related to ontinuity, it s possible to give a de�nition of the derivative based

on ontinuity. We extend the de�nition of f̃c like this:

f̃c(h) =







f(c+ h)− f(c)

h
for h 6= 0,

f ′(c) for h = 0.

If there exists a number f ′(c) that makes this funtion ontinuous at 0, then that number is the derivative

of f at c; if there isn t, then this derivative doesn t exist and f is not di�erentiable at c. As it is, this is
just the usual de�nition stated with di�erent terminology. Now I ll do a little algebra on f̃c: if h 6= 0 and

f is de�ned at c+ h, then

f̃c(h) =
f(c+ h)− f(c)

h
,

h f̃c(h) = f(c+ h)− f(c),

h f̃c(h) + f(c) = f(c+ h),

f(c+ h) = f(c) + f̃c(h)h;

if h = 0, then this equation is still true as long as f̃c is de�ned at 0, sine then it just says that f(c) =
f(c). So another way to de�ne the derivative is to say that f is di�erentiable at c if there exists a funtion

f̃c that is ontinuous at 0 and satis�es the last equation above (for all h suh that f is de�ned at c+ h),
and then f ′(c) = f̃c(0).

This is useful, beause having the entire funtion f̃c an help with proving theorems about deriva-

tives, and in fat the general strategy is to apply the equation for f(c+ h). For example, to prove that fg
is di�erentiable wherever f and g are, with

(fg)
′

(c) = f ′(c) g(c) + f(c) g′(c),

I ll use f̃c and g̃c along with the limit de�nition of (fg)
′

:

(fg)
′

(c) = lim
h→0

(fg)(c+ h)− (fg)(c)

h
= lim

h→0

f(c+ h) g(c+ h)− f(c) g(c)

h

= lim
h→0

Ä

f(c) + f̃c(h) h
ä Ä

g(c) + g̃c(h) h
ä

− f(c) g(c)

h

= lim
h→0

f(c) g(c) + f(c) g̃c(h)h+ f̃c(h)h g(c) + f̃c(h)h g̃c(h)h− f(c) g(c)

h

= lim
h→0

f̃c(h) g(c)h+ f(c) g̃c(h)h+ f̃c(h) g̃c(h)h
2

h
= lim

h→0

Ä

f̃c(h) g(c) + f(c) g̃c(h) + f̃c(h) g̃c(h) h
ä

= f̃c(0) g(c) + f(c) g̃c(0) + f̃c(0) g̃c(0) 0 = f ′(c) g(c) + f(c) g′(c) + f ′(c) g′(c) 0

= f ′(c) g(c) + f(c) g′(c).
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(To evaluate the limit near the end, we need f̃c and g̃c to be ontinuous at 0.) This is not muh simpler

than the book s proof (although I used smaller steps), but it s a little more straightforward, without the

step where you add and subtrat something without learly knowing why it will help.

Similarly, we an prove the Chain Rule right away: if g is di�erentiable at c and f is di�erentiable

at g(c), then f ◦ g is di�erentiable at c and

(f ◦ g)
′

(c) = f ′

Ä

g(c)
ä

g′(c).

I ll prove this using g̃c and f̃g(c):

(f ◦ g)
′

(c) = lim
h→0

(f ◦ g)(c+ h)− (f ◦ g)(c)

h
= lim

h→0

f
Ä

g(c+ h)
ä

− f
Ä

g(c)
ä

h

= lim
h→0

f
Ä

g(c) + g̃c(h) h
ä

− f
Ä

g(c)
ä

h
= lim

h→0

f
Ä

g(c)
ä

+ f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)h− f
Ä

g(c)
ä

h

= lim
h→0

f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)h

h
= lim

h→0

(

f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)
)

= f̃g(c)
Ä

g̃c(0) 0
ä

g̃c(0) = f̃g(c)
Ä

g′(c) 0
ä

g′(c) = f̃g(c)(0) g
′(c)

= f ′

Ä

g(c)
ä

g′(c).

Now the proof is not only straightforward (or as straightforward as something so abstrat an be), but

also it an be done immediately and rigorously without postponing things until the end of the hapter.

This de�nition of derivative will be handy for some other proofs later on, suh as for the Mean Value

Theorem.

Appendix: All of the theorems

Here are omplete statements of all of the basi rules of di�erentiation in the notation of derivatives of

funtions:

• Constant Rule: If f is a onstant funtion, then f is di�erentiable at any number c and f ′(c) = 0.
• Sum Rule: If f and g are di�erentiable at c, then so is f + g and

(f + g)
′

(c) = f ′(c) + g′(c).

• Di�erene Rule: If f and g are di�erentiable at c, then so is f − g and

(f − g)
′

(c) = f ′(c)− g′(c).

• Multiple Rule: If f is di�erentiable at c and k is a onstant, then kf is also di�erentiable at c and

(kf)
′

(c) = k f ′(c).

• Produt Rule: If f and g are di�erentiable at c, then so is fg and

(fg)
′

(c) = f ′(c) g(c) + f(c) g′(c).

• Quotient Rule: If f and g are di�erentiable at c and g(c) 6= 0, then f/g is also di�erentiable at c and

(f/g)
′

(c) =
f ′(c) g(c)− f(c) g′(c)

g(c)
2 .

• Power Rule: If f is the power funtion with exponent n (so f(x) = xn
for all x), then f is di�eren-

tiable at any number c (unless c = 0 and n < 1) and f ′(c) = n cn−1
.

• Chain Rule: If g is di�erentiable at c and f is di�erentiable at g(c), then f ◦ g is di�erentiable at c
and

(f ◦ g)
′

(c) = f ′

Ä

g(c)
ä

g′(c).

Eah of these an be proved by applying the de�nition of derivative in terms of limits for the derivative

that we want to prove exists, the de�nition of derivative in terms of ontinuity for the derivatives that we

already know exist (if any), and (exept for the Power Rule) basi algebrai simpli�ation.
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