
Notes Math-1600-es31 2015 O
tober 20

Many 
al
ulations in 
al
ulus are easier to do using di�erentials. Furthermore, di�erentials and the related

di�erential forms are often used in appli
ations, espe
ially (but not only) to physi
s. The o�
ial textbook


overs di�erentials, but in
ompletely and only in one minor appli
ation. It then uses di�erentials again

later (mostly in material for Cal
ulus 2 and 3), but they are useful mu
h earlier. So I will make heavy use

of them.

Variables

In Cal
ulus, we study variable quantities, that is quantities whose values may vary (or 
hange).

In Algebra, we often use the word `variable' to refer to any quantity whose value we don t know, even

if this value is �xed and never 
hanges throughout the problem. In fa
t, the standard Algebra problem,

solving an equation su
h as 2x+ 3 = 5, involves �guring out the value of the variable; so it had only one

value all along, and we just had to �gure out what it was. So if x is a variable in an Algebra problem, and

at some point we de
ide that the value of x is 1, then this may well mean that x is 1 throughout the entire

problem. (That s not always the 
ase in Algebra, but it often is.)

In Cal
ulus, we take the word `variable' more seriously. If x is a variable in a Cal
ulus problem, then

x might be 1 at some point, but it will probably be 6 at some other point in the problem. (And more of-

ten than not, it will take all of the values in between 1 and 6 along the way, su
h as 1 1

2
, π, and 5.789.)

Furthermore, if x and y are two variables that appear in the same problem, then the value of y will usu-

ally 
hange as the value of x 
hanges. Cal
ulus is primarily about exa
tly this situation: �guring out how

one quantity 
hanges as another quantity 
hanges.

In the simplest 
ases, it turns out that y is a fun
tion of x; that is, there is a �xed fun
tion f su
h

that y = f(x) remains true as x and y vary. (There are also situations where the fun
tion f is 
hanging

as well, say f(t) = t2 at one point and f(t) = t3 at another point, but we re not going to deal with that

now.) Cal
ulus textbooks generally try to �t everything into this mould, but it doesn t always 
ome out

like this naturally. Often, you know that both x and y are 
hanging, but it s not obvious that the value

of x at some point is enough information to �gure out the value of y at some point; yet when you write

y = f(x), you re assuming that this is enough information.

Most of the time, however, we 
an assume that there is some variable t, 
alled the independent vari-

able, su
h that every other variable in the problem is a fun
tion of t. That is, if x and y appear in the

problem, then there are �xed fun
tions f and g su
h that x = f(t) and y = g(t) throughout the prob-
lem. (Then x and y are 
alled dependent variables, sin
e their values depend on the values of t, through

the fun
tions f and g.) But this variable t might not show up dire
tly! Cal
ulus books will usually tell

you (espe
ially in word problems) that it s ne
essary to pi
k an independent variable, but it s enough to

visualize the range of variation in the problem, and you 
an treat all of the variables on an equal foot-

ing. All the same, for the sake of formal de�nitions, we will assume that there is an independent variable t

and that every other variable is a fun
tion of it, even though in pra
ti
e we don t have to identify it. (Of


ourse, you don t have to 
all the independent variable `t', but I usually will.)

If we re not going to refer dire
tly to t, then we re not going to refer dire
tly to f and g either, so we

need some way to refer to the values of these fun
tions without referring to the fun
tions themselves. Here

is how we do it formally:

If u = f(t), then u|t=c = f(c).

More generally, if P is some statement that is only true on
e, then P is equivalent to the statement t = c

for some value of c, so we 
an make sense of u|P . Even if P is a statement that might or might not only

be true on
e, as long as every possible value of u|P is the same, then we 
an still make sense of u|P . Final-
ly, even if there are di�erent possible values of u|P , then the value of u|P still varies, but at least it doesn t

vary as mu
h as u itself, sin
e there are now fewer possibilities.
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This all sounds very abstra
t (be
ause it is), but the 
on
rete appli
ation is straightforward; here are

some examples:

x|x=5
= 5,

(2x+ 3)|x=4
= 2(4) + 3 = 11,

(2x+ 3y)|x=4,
y=5

= 2(4) + 3(5) = 23.

Taking the last of these for example, there is no need to think about what t is when x = 4 and y = 5; it s
enough that no matter what t may be, if x = 4 and y = 5, then u = 2x+ 3y is de�nitely 2(4) + 3(5) = 23.
So all that you have to do in pra
ti
e is to plug and 
hug. Sometimes (generally only in the middle of a

problem or in something theoreti
al) you 
an t work out the value 
ompletely; for example,

(2x+ 3y)|x=4
= 2(4) + 3(y|x=4

) = 8 + 3y|x=4
.

If we don t know anything more about the relationship between x and y, then we don t know the value

of y when x = 4, so this is all that we 
an say in this example, but at least we were able to work out part

of it.

Notation and terminology

If x is a variable, then dx is the di�erential of x. You 
an think of dx as indi
ating an in�nitely small

(in�nitesimal) 
hange in the value of x, or (better) the amount by whi
h x 
hanges when an in�nitesimal


hange is made (an in�nitely small 
hange in the value of the independent variable t). A pre
ise de�nition

is at the end of these notes, but you will not be tested dire
tly on that; what you need to know is how to

use di�erentials.

Note that dx is not d times x, and dx is also not exa
tly a fun
tion of x. Rather, x (being a variable

quantity) should itself be a fun
tion of some other quantity t, and dx is also a fun
tion of a sort; so d is an

operator : something that turns one fun
tion into another fun
tion. However, an expression like u dx does

involve multipli
ation: it is u times the di�erential of x.

We often divide one di�erential by another; for example, dy/dx is the result of dividing the di�eren-

tial of y by the di�erential of x. The textbook introdu
es this notation early to stand for the derivative

of y with respe
t to x, and indeed it is that; but what the book doesn t tell you is that dy/dx literally is

dy divided by dx. Unfortunately, d2y/dx2
, the se
ond derivative, is not literally d2y = d(dy) divided by

dx2 = (dx)
2
; for this reason, I prefer the notation (d/dx)

2
y, meaning (d/dx)(d/dx)y = (d/dx)(dy/dx) =

d(dy/dx)/dx.

The Chain Rule

The most important fa
t about di�erentials is this: If f is a di�erentiable fun
tion, then

d
Ä

f(u)
ä

= f ′(u) du.

That is, the di�erential of f(u) equals f ′(u) times the di�erential of u, where f ′
is the derivative of f (as

a fun
tion). This fa
t not only shows the relationship between di�erentials and derivatives, but also (be-


ause u 
ould be any quantity) it en
apsulates the Chain Rule in di�erential form. The Chain Rule is an

important prin
iple in 
al
ulus, whi
h is often di�
ult to learn how to use; but with di�erentials it is easy.

In parti
ular, if y = f(x), then

dy

dx
=

d
Ä

f(x)
ä

dx
=

f ′(x) dx

dx
= f ′(x),

so dy divided by dx really is the derivative.

For example, suppose that you have dis
overed (say from the de�nition as a limit) that the derivative

of f(x) = x2
is f ′(x) = 2x. Then this fa
t 
an be expressed in di�erential form:

(*)d(x2) = d
Ä

f(x)
ä

= f ′(x) dx = 2x dx.
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Conversely, if (by performing a 
al
ulation with di�erentials) you dis
over the equation (*) above, then

you know the derivative of f as well:

f ′(x) =
d
Ä

f(x)
ä

dx
=

d(x2)

dx
=

2x dx

dx
= 2x.

Whi
hever of these fa
ts you dis
over �rst, on
e you know them, you know something even more general:

d(u2) = 2u du.

(The power to derive this from equation (*) is the Chain Rule.) The value of this is that u 
an be any ex-

pression whatsoever; for example, if u = x2
again, then

d(x4) = d
Ä

(x2)
2
ä

= 2(x2) d(x2) = 2x2(2x dx) = 4x3 dx.

So now you have learnt a new derivative, without having to 
al
ulate it from s
rat
h.

Rules of di�erentiation

Every theorem about derivatives of fun
tions may also be expressed as a theorem about di�erentials. Here

are the most 
ommon rules:

• The Constant Rule: d(K) = 0 if K is 
onstant.

• The Sum Rule: d(u+ v) = du+ dv.
• The Translate Rule: d(u+ C) = du if C is 
onstant.

• The Di�eren
e Rule: d(u− v) = du− dv.
• The Produ
t Rule: d(uv) = v du+ u dv.
• The Multiple Rule: d(ku) = k du if k is 
onstant.

• The Quotient Rule: d

Å

u

v

ã

=
v du− u dv

v2
.

• The Power Rule: d(un) = nun−1 du if n is 
onstant.

• The Root Rule: d( m
√
u) =

m
√
u du

mu
if m is 
onstant.

Of these, only the Constant Rule, the Sum Rule, the Produ
t Rule, and the Power Rule are absolutely

ne
essary, sin
e every other expression built out of the operations in the rules above 
an be built out of

the operations in these four rules. However, it is often handy to use all of these rules, even the Root Rule

(whi
h is not in the textbook). It is up to you how many of these rules to learn.

In addition, every time that you learn the derivative of a new fun
tion, you learn a new rule for di�er-

entials, by applying the Chain Rule to that fun
tion. We have already seen an example of this: applying

the Chain Rule to the fun
tion f(x) = x2
gives the spe
ial 
ase of the Power Rule for n = 2. Here are a

few other fun
tions whose derivatives you will learn, expressed as rules for di�erentials:

• d(eu) = eu du.

• d(lnu) =
du

u
.

• d(sinu) = cosu du.
• d(cosu) = − sinu du.

• d(arctanu) =
du

u2 + 1
.

And more!

Noti
e that every one of these rules turns the di�erential on the left into a sum of terms (possibly on-

ly one term, or none in the 
ase of the Constant Rule), ea
h of whi
h is an ordinary expression multiplied

by a di�erential (or something algebrai
ally equivalent to this). An expression like this is 
alled a di�er-

ential form (although a
tually there are more general sorts of di�erential forms). If, when you are 
al-


ulating the di�erential of an expression, your result at any stage is not like this, then you have made a

mistake!
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Using di�erentials

The main te
hnique for using di�erentials is simply to take the di�erential of both sides of an equation.

However, you may only do this to an equation that holds generally , but not to an equation that holds only

for parti
ular values of the variables. (Ultimately, this is be
ause d is an operator, not a fun
tion, so it

must be applied to entire fun
tions, not only to parti
ular values of those fun
tions.)

The simplest 
ase is an equation su
h as y = ex
2

, when we want the derivative of y with respe
t to x.

So:

y = ex
2

;

dy = d
Ä

ex
2
ä

= ex
2

d(x2) = ex
2 · 2x dx = 2xex

2

dx;

dy

dx
= 2xex

2

.

Now we have the derivative. If we want the se
ond derivative, then we do this again:

dy/dx = 2xex
2

;

d(dy/dx) = d
Ä

2xex
2
ä

= ex
2

d(2x) + 2x d
Ä

ex
2
ä

= ex
2 · 2 dx+ 2x · 2xex2

dx =
Ä

2ex
2

+ 4x2ex
2
ä

dx;

(d/dx)
2
y =

d(dy/dx)

dx
= 2ex

2

+ 4x2ex
2

.

Now we have the se
ond derivative (also written d2y/dx2
).

The previous example began with an equation solved for y. But we don t need this; suppose instead

that we have y5 + x2 = x5 + y (whi
h 
annot be solved for either variable using the usual algebrai
 oper-

ations of addition, subtra
tion, multipli
ation, division, powers, and roots). Undaunted, we forge ahead

anyway:

y5 + x2 = x5 + y;

d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;

5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4 dy − dy = 5x4 dx− 2x dx;

(5y4 − 1) dy = (5x4 − 2x) dx;

dy

dx
=

5x4 − 2x

5y4 − 1
.

This pro
ess is 
alled impli
it di�erentiation.
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The se
ond derivative is a little more straightforward at �rst (or it would be if we didn t have to use

the Quotient Rule), but there is a twist at the end:

dy/dx =
5x4 − 2x

5y4 − 1
;

d(dy/dx) = d

Å

5x4 − 2x

5y4 − 1

ã

=
(5y4 − 1) d(5x4 − 2x)− (5x4 − 2x) d(5y4 − 1)

(5y4 − 1)
2

=
(5y4 − 1)(20x3 − 2) dx− (5x4 − 2x)(20y3) dy

(5y4 − 1)
2

=
20x3 − 2

5y4 − 1
dx− 20y3(5x4 − 2x)

(5y4 − 1)
2

dy;

(d/dx)
2
y =

d(dy/dx)

dx
=

20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

dy

dx

=
20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

5x4 − 2x

5y4 − 1

(whi
h 
ould be simpli�ed further). Noti
e that I substitute the known expression for dy/dx in the last

step.

Another handy appli
ation of di�erentials is the 
ase where both quantities x and y may be expressed

as fun
tions of some other quantity t. (For the purposes of formal de�nitions, we always assume that this

is possible, but now we re really going to use it.) If we start with the same equation as above, then this

will give us an equation relating the derivatives with respe
t to t:

y5 + x2 = x5 + y;

d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;

5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4
dy

dt
+ 2x

dx

dt
= 5x4

dx

dt
+

dy

dt
.

If we have information about one or both of these derivatives, then this equation will often give us useful

information to solve a problem. This situation is 
alled related rates, sin
e derivatives 
an be viewed as

rates of 
hange (espe
ially derivatives with respe
t to time t, although the t in the equation above doesn t

have to stand for time).

When we get to integrals, di�erentials be
ome so useful that even the book starts using them, but I ll

save that for later.

Appendix: De�nitions and proofs

To formally de�ne what di�erentials are and prove their properties, I ll make the same assumption that

I made at the beginning of these notes, that there is an independent variable t that every other variable

is a fun
tion of. Then, I said that if u = f(t), then u|t=c = f(c). Now I ll say that, if u = f(t) and f is a

di�erentiable fun
tion, then

du| t=c,
dt=h

= f ′(c)h.

More generally, if u = f(t) and v = g(t), then

(u dv)| t=c,
dt=h

= f(c) g′(c)h.
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Again, this is abstra
t, but the 
on
rete appli
ation is straightforward; for example:

(2x dx+ 3dx)| x=4,
dx=0.05

= 2(4)(0.05) + 3(0.05) = 0.55,

(2x dx+ 3y dy)| x=4,y=5,
dx=0.05,dy=0.02

= 2(4)(0.05) + 3(5)(0.02) = 0.7.

(I ve put small numbers in for dx and dy, be
ause this is most often what 
omes up in pra
ti
e, although

for theoreti
al purposes it doesn t matter.) It s now more 
ommon to be given only partial information;

for example:

(2x dx+ 3dx)|x=4
= 2(4) dx+ 3dx = 11dx,

(2x dx+ 3y dy)|x=4,
y=5

= 2(4) dx+ 3(5) dy = 8dx+ 15dy.

Noti
e that you don t plug in the values of x and y inside the di�erential operator d; if you re not given
values of dx and dy, then those di�erentials must remain in the answer.

While expressions like the above 
ome up o

asionally, the main purpose of a pre
ise de�nition is to

prove theorems. (That s how we 
an be sure that the rules of Cal
ulus will always work, at least when the

de�nitions that prove them 
an be made to apply.) Earlier I gave a list of rules for di�erentials; we 
an

prove these using the pre
ise de�nition of di�erential and the known rules for derivatives of fun
tions. For

example, if u = f(t) and v = g(t), then uv = f(t) g(t) = (fg)(t). Therefore,

d(uv)| t=c,
dt=h

= (fg)
′

(c)h =
Ä

f ′(c) g(c) + f(c) g′(c)
ä

h = g(c) f ′(c)h+ f(c) g′(c)h = (v du+ u dv)| t=c,
dt=h

.

Here, I ve used the formal de�nition of di�erential along with the Produ
t Rule for derivatives of fun
-

tions. The 
on
lusion is that d(uv) and v du+ u dv always evaluate to the same result, so

d(uv) = v du+ u dv,

whi
h is the Produ
t Rule for di�erentials. In the same way, all of the rules for di�erentials follow from

rules for derivatives of fun
tions.

The Chain Rule is an important spe
ial 
ase, so I ll prove it too. If u = g(t) and f is any fun
tion,

then f(u) = f(g(t)) = (f ◦ g)(t), so if f is di�erentiable, then

d
Ä

f(u)
ä

∣

∣

∣ t=c,
dt=h

= d
Ä

(f ◦ g)(t)
ä

∣

∣

∣ t=c,
dt=h

= (f ◦ g)′(c)h = f ′

Ä

g(c)
ä

g′(c)h =
Ä

f ′(u) du
ä

∣

∣

∣ t=c,
dt=h

.

Again, I used the de�nition of di�erential and the Chain Rule for fun
tions, and my 
on
lusion is the Chain

Rule for di�erentials:

d
Ä

f(u)
ä

= f ′(u) du

whenever f is a di�erentiable fun
tion.

It s not really essential to assume that there exists a single independent variable that every other vari-

able is a fun
tion of, and I ll stop making that assumption in Cal
ulus 3. Then the formal de�nition will

be
ome a little tri
kier, but all of the rules for di�erentials will 
ontinue to apply exa
tly as I stated them

above.
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