Recall from the October 19 notes that if f is differentiable at c, then

$$
f(c+h)=f(c)+\tilde{f}_{c}(h) h
$$

for some function \tilde{f}_{c} that's continuous at 0 (and then $\tilde{f}_{c}(0)$ is $f^{\prime}(c)$). Since \tilde{f}_{c} is continuous at 0 , we can say that $\tilde{f}_{c}(h) \approx \tilde{f}_{c}(0)$ when $h \approx 0$, or in other words, $\tilde{f}_{c}(h) \approx f^{\prime}(c)$ when $h \approx 0$. Putting this approximation in the equation above, we get

$$
f(c+h) \approx f(c)+f^{\prime}(c) h
$$

when $h \approx 0$. Writing x for $c+h$ (so that $h=x-c$), you can also put this as

$$
f(x) \approx f(c)+f^{\prime}(c)(x-c)
$$

when $x \approx c$. While the left-hand side could be any function, the right-hand side is a linear function of x; this is the linear approximation to f near c.

This is actually only the beginning of a whole series of approximations, each (typically) better than the one before it:

$$
\begin{aligned}
f(x) & \approx f(c), \text { a constant, if } f \text { is continuous at } c ; \\
f(x) & \approx f(c)+f^{\prime}(c)(x-c), \text { a linear function of } x, \text { if } f \text { is differentiable at } c ; \\
f(x) & \approx f(c)+f^{\prime}(c)(x-c)+\frac{1}{2} f^{\prime \prime}(c)(x-c)^{2}, \text { a quadratic function of } x, \text { if } f \text { is twice differentiable at } c ; \\
f(x) & \approx f(c)+f^{\prime}(c)(x-c)+\frac{1}{2} f^{\prime \prime}(c)(x-c)^{2}+\frac{1}{6} f^{\prime \prime \prime}(c)(x-c)^{3}, \text { a cubic function of } x, \\
& \text { if } f \text { is 3-times differentiable at } c ; \\
& \vdots
\end{aligned}
$$

This sequence of approximations is discussed in Section 9.8 of the textbook and covered in Calculus 2 .
It's handy to describe linear approximation in terms of differentials and differences. While a differential represents an infinitesimal (infinitely small) change, a difference represents an appreciable or finitesimal (not infinitely small) change. As x changes from c to $c+h$, we say that the difference in x is

$$
\Delta x=(c+h)-c=h .
$$

Meanwhile, if $y=f(x)$, then the difference in y is

$$
\Delta y=\left.y\right|_{x=c+h}-\left.y\right|_{x=c}=f(c+h)-f(c) .
$$

To be specific, we can write

$$
\left.\Delta y\right|_{\substack{x=c, \Delta x=h}}=f(c+h)-f(c) .
$$

Then the linear approximation says

$$
\left.\Delta y\right|_{\substack{x=c, \Delta x=h}}=f(c+h)-f(c) \approx f(c)+f^{\prime}(c) h-f(c)=f^{\prime}(c) h=\left.\mathrm{d} y\right|_{\substack{x=c, \mathrm{~d} x=h}}
$$

So in the end, the linear approximation replaces differences with differentials. Although

$$
\left.\left.\Delta y\right|_{\substack{x=c, \Delta x=h}} \approx \mathrm{~d} y\right|_{\substack{x=c, \mathrm{~d} x=h}}
$$

is the proper way to put it, often one abbreviates this as

$$
\Delta y \approx \mathrm{~d} y
$$

(But really this only correct if we also have $\Delta x \approx \mathrm{~d} x$, because that difference is also replaced by a differential in the approximation.) More generally, you can say that an equation involving differentials can be replaced by an approximate equation involving differences.

