
Appli
ations of di�erentiation

Here are the last few appli
ations of di�erentiation.

1 Optimization

Literally, optimization is making something the best, but we use it in math to mean maximization,

whi
h is making something the biggest. (You 
an imagine that the thing that you re maximizing is a nu-

meri
al measure of how good the thing that you re optimizing is.) Essentially the same prin
iples apply

to minimization, whi
h is making something the smallest. (And pessimization is making something the

worst, although people don t use that term very mu
h.) A generi
 term for making something the largest

or smallest is extremization.

In theory, optimization is simply �nding absolute extrema, whi
h is most easily done for 
ontinuous

fun
tions on 
losed, bounded intervals. In that 
ase, the maximum and minimum must both exist, by the

Extreme Value Theorem, and ea
h of them must o

ur at either the endpoint of the interval or where the

derivative of the fun
tion is either zero or unde�ned. However, pra
ti
al problems 
annot always be mod-

elled in this way, so we will need some more general te
hniques.

The key prin
iple of applied optimization is this:

A quantity u 
an only take a maximum or minimum value when its di�erential du is zero or un-

de�ned.

If you write u as f(x), where f is a �xed di�erentiable fun
tion and x is a quantity whose range of possi-

ble values you already understand (typi
ally an interval), then du = f ′(x) dx. So u 
an only take an ex-

treme value when its derivative (with respe
t to x) is zero or unde�ned or when you 
an no longer vary

x however you please (whi
h must o

ur at the extreme values of x and typi
ally only then). This re
re-

ates the situation that I referred to above, �nding the extreme values of a fun
tion de�ned on an interval.

However, the prin
iple that du is zero or unde�ned applies even when u is not expli
itly given as a fun
-

tion of anything else.

Be 
areful, be
ause u might not have a maximum or minimum value! Assuming that u varies 
ontinu-

ously (whi
h it must if Cal
lulus is to be useful at all), then it must have a maximum and minimum value

whenever the range of possibilities is 
ompa
t ; this means that if you pass 
ontinuously through the possi-

bilities in any way, then you are always approa
hing some limiting possibility. (In terms of u = f(x), this
is the 
ase when f is 
ontinuous and its domain, the range of possible values of x, is a 
losed and bounded

interval.)

However, if the range of possibilities heads o� to in�nity in some way, or if there is an edge 
ase that s

not quite possible to rea
h, then you also have to take a limit to see what value u is approa
hing. (In

terms of u = f(x), if the interval is open or unbounded at either end, then there is a dire
tion in whi
h

x 
ould vary but in whi
h there is no limiting value of x in the range of possibilities.) If any su
h limit

is larger than every value that u a
tually rea
hes (whi
h in
ludes the possibility that a limit is ∞), then

u has no maximum value; if any su
h limit is smaller than every value that u a
tually rea
hes (whi
h in-


ludes the possibility that a limit is −∞), then u has no minimum value.

So in the end, you look at these possibilities:

• when the derivative of u is zero or unde�ned,

• the extreme edge 
ases, and

• the limits approa
hing impossible limiting 
ases.

The largest value of u that you �nd in this way (regardless of whether this value is a
tually attained or

is only approa
hed in the limit) is 
alled the supremum of u; similarly, the smallest value of u that you

�nd is 
alled the in�mum of u. If u a
tually takes the value of its supremum, then that same value is also

the maximum of u; but if u only approa
hes its supremum in a limit, then it has no maximum. Similarly,

if u a
tually takes the value of its in�mum, then that same value is also the minimum of u; but if u only

approa
hes its in�mum in a limit, then it has no minimum.

Here is a typi
al problem: The hypotenuse of a right triangle (maybe it s a ladder leaning against a

wall) is �xed at 20 feet, but the other two sides of the triangle 
ould be anything. Still, sin
e it s a right
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triangle, we know that x2 + y2 = 202, where x and y are the lengths of legs of the triangle. Di�erentiat-

ing this, 2x dx+ 2y dy = 0. Now suppose that we want to maximize or minimize the area of this trian-

gle. Sin
e it s a right triangle, the area is A = 1

2
xy, so dA = 1

2
y dx+ 1

2
x dy. If this is zero, then 1

2
y dx+

1

2
x dy = 0, to go along with the other equation 2x dx+ 2y dy = 0.

The equations at this point will always be linear in the di�erentials, so think of this is a system of

linear equations in the variables dx and dy. There are various methods for solving systems of linear equa-
tions; I ll use the method of addition (aka elimination), but any other method should work just as well.

So

1

2
y dx+ 1

2
x dy = 0 be
omes 2xy dx+ 2x2 dy = 0 (multiplying both sides by 4x), while 2x dx+ 2y dy = 0

be
omes 2xy dx+ 2y2 dy = 0 (multiplying both sides by y). Subtra
ting these equations gives (2x2 − 2y2) dy =
0, so either dy = 0 or x2 = y2. Now, x and y 
an 
hange freely as long as they re positive, but we have

limiting 
ases: x → 0+ and y → 0+. Sin
e x2 + y2 = 400, we see that x2 → 400 as y → 0; sin
e x is posi-

tive, this means that x → 20 as y → 0. Similarly, y → 20 as x → 0. In those 
ases, A = 1

2
xy → 0. On the

other hand, if x2 = y2, then x = y (sin
e they are both positive), so x, y = 10
√
2, sin
e x2 + y2 = 400. In

that 
ase, A = 1

2
xy = 100.

So the largest area is 100 square feet, and while there is no smallest area, the area 
an get arbitrarily

small with a limit of 0.

2 E
onomi
 appli
ations

In word problems in e
onomi
s or �nan
e, a few quantities arise regularly, whi
h you should know about.

• Quantity in this 
ontext has a spe
i�
 meaning: the amount of a good or servi
e made and/or sold

in a given period of time. Quantity is thus measured in su
h units as pounds per week, items per

year, or litres per hour. Quantity is variously denoted q or x.

• Pri
e (or unit pri
e) is the amount of money re
eived for a given amount of goods or servi
es. So

pri
e is measured in units su
h as dollars per pound or euros per item. Pri
e is denoted p, a lower
ase

letter.

• Revenue is the amount of money re
eived for goods or servi
es in a given period of time. Revenue is

measured in dollars per week, euros per year, et
. Revenue is denoted R, and we have this equation:

R = qp.

(Noti
e that the units make sense in this equation; amount over time, multiplied by money over amount,

be
omes money over time.)

• Cost is the amount of money that the business has to spend (in a given period of time) in order to

produ
e and distribute their goods and servi
es. (In this terminology, 
ost is 
ompletely di�erent

from pri
e.) Like revenue, 
ost is measured in units of money over time.

• Finally, pro�t is the amount of money that the business makes and keeps in a given period of time.

Unlike everything else here, it makes sense for pro�t to be negative. Pro�t is denoted P , an upper
ase

letter, and we have another equation:

P = R− C.

In business, you generally want to maximize pro�t: make it not only positive but as large as possible.

Even if you don t want to maximize pro�t as normally measured (be
ause you 
are about something else

besides money), e
onomists typi
ally try to 
al
ulate whatever else you 
are about and still say that you

maximize pro�t (in a generalized sense).

For any of these quantities, we 
an dis
uss their average or marginal values. In this 
ontext, the aver-

age pro�t/
ost/et
 is the pro�t/
ost/et
 divided by the quantity:

P̄ =
P

q
, C̄ =

C

q
, . . . .

Page 2 of 3



(As you 
an see, a bar is used to indi
ate this ratio. Be 
areful; when we get to appli
ations of integrals,

this bar will be used to denote an average in a di�erent way.) On the other hand, the marginal prof-

it/
ost/et
 is the derivative of pro�t/
ost/et
 with respe
t to quantity:

P ′ =
dP

dq
, C ′ =

dC

dq
, . . . .

(As you 
an see, a prime ti
k is used to indi
ate this derivative, whi
h is safe in 
ontext be
ause it always

means the derivative respe
t to q. For a derivative with respe
t to time, whi
h is also important in this


ontext even though we aren t doing any examples of that in this 
lass, a dot may be used instead.) Al-

though the units for a marginal or average quantity are the same, they represent di�erent things!

Finally, people also speak of the marginal average pro�t/
ost/et
:

P̄ ′ =
d(P/q)

dq
=

qP ′ − P

q2
= P ′ − P̄ ,

C̄ ′ =
d(C/q)

dq
=

qC ′ − C

q2
= C ′ − C̄,

.

.

.

The marginal pro�t is parti
ularly important, sin
e it must be zero when pro�t is maximized (as long as

the maximum pro�t o

urs when it is still possible to vary the quantity in any way desired); and sin
e the

marginal marginal pro�t (the se
ond derivative of pro�t with respe
t to quantity) is typi
ally negative,

the pro�t really will be maximized when the marginal pro�t is zero. However, in the absen
e of informa-

tion about the revenue, there is a rule of thumb that one should minimize the average 
ost instead, whi
h

means �nding where the marginal average 
ost is zero.

3 Newton

′
s Method

If you want to solve an equation f(x) = 0, then the Intermediate Value Theorem may give you a way to

approximate the solution, but it is usually very ine�
ient. The Newton�Raphson Method (or simply New-

ton s Method) is usually mu
h faster, although it doesn t always work. Here, you start with a guess x0,

then repla
e it with a (hopefully) better guess x1, and so on. These guesses are 
omputed in turn as fol-

lows:

x1 = x0 −
f(x0)

f ′(x0)
,

x2 = x1 −
f(x1)

f ′(x1)
,

x3 = x2 −
f(x2)

f ′(x2)
,

.

.

.

With any lu
k, none of these guesses will give f ′(x) = 0 (whi
h makes the next guess unde�ned) but even-

tually one will give f(x) ≈ 0 to as 
lose an approximation as one wants.

The Newton�Raphson Method is guaranteed to work under 
ertain 
onditions given by the Newton�

Kantorovi
h Theorem: If f is di�erentiable at a, f(a) and f ′(a) are nonzero, f is twi
e di�erentiable stri
t-

ly between a and a− 2f(a)/f ′(a), and

|f ′′(x)| ≤ |f ′(a)|2
2 |f(a)|

whenever x is stri
tly between a and a− 2f(a)/f ′(a), then Newton s Method will give a sequen
e of values

that are stri
tly between a and a− 2f(a)/f ′(a), and that 
onverge to a solution of f(x) = 0 in the sense

that the limit limn→∞ xn exists and f(limn→∞ xn) = 0.
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