Differentials

A word about notation: As I remarked earlier (on page 3 of the main notes), when y = f(x), we can write
dy/dx = f'(x); both sides of the latter equation are notation for a derivative, which is one of the things
that differentiation produces. The left-hand side means the derivative of y with respect to x, while f in
the right-hand side is a function which is the derivative of the original function f. To say that the deriva-
tive of f is f’ suggests that the derivative is a basic concept, not a combination of anything more compli-
cated, and that is how the textbook approaches derivatives. But the left-hand side suggests that a deriva-
tive is a ratio, the result of dividing dy by da, and this is how they were originally used. As for dy and dx
themselves, they are the differentials of y and x; a differential is another thing that differentiation pro-
duces.

Differentials

Many calculations in calculus are easier to do using differentials. Furthermore, differentials and the related
differential forms are often used in applications, especially (but not only) to physics. The official textbook
covers differentials (in Section 3.11), but incompletely and only in one minor application. It then uses dif-
ferentials again later (mostly in material for Calculus 2 and 3), but they are useful much earlier. So I will
make heavy use of them.

If x is a variable quantity, then dz is the differential of . You can think of dz as indicating an in-
finitely small (infinitesimal) change in the value of x, or (better) the amount by which « changes when an
infinitesimal change is made (an infinitely small change in the value of the independent variable ). A pre-
cise definition is in the next section, but you will not be tested directly on that; what you need to know is
how to use differentials.

Note that dz is not d times z, and dx is also not exactly a function of x. Rather, x (being a variable
quantity) should itself be a function of some other quantity ¢, and dz is also a function of a sort; so d is an
operator: something that turns one function into another function. However, an expression like u dx does
involve multiplication: it is u times the differential of z.

We often divide one differential by another; for example, dy/dz is the result of dividing the differen-
tial of y by the differential of x. The textbook introduces this notation early to stand for the derivative
of y with respect to x, and indeed it is that; but what the book doesn't tell you is that dy/dz literally
is dy divided by dx. Unfortunately, d?y/dz?, the second derivative of y with respect to z, is not literally
d2y = d(dy) divided by dz?2 = (dz)?; for this reason, I prefer the notation (d/dz )y, meaning (d/dz)(d/dz)y
(d/dz)(dy/dz) = d(dy/dx)/dx for the second derivative.

The Chain Rule

The most important fact about differentials is this: If f is a differentiable function, then
A(f(w) = f'(u) du.

That is, the differential of f(u) equals f/(u) times the differential of u, where f’ is the derivative of the

function f. This fact not only shows the relationship between differentials and derivatives, but also (be-

cause u could be any quantity) it encapsulates the Chain Rule in differential form. The Chain Rule is an

important principle in calculus, which is often difficult to learn how to use; but with differentials it is easy.
In particular, if y = f(x), then

dy d(f(as)) f(z)dx
de ~  dz dz

so dy divided by dz really is the derivative.
For a better example, suppose that you have discovered (say from the definition as a limit) that the
derivative of f(x) = 22 is f/(x) = 2x. Then this fact can be expressed in differential form:

d(z?) = 2z dz (*)
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(because d(z?) = d( f (:1:)) = f(x)dz = 2z dz). Conversely, if (by performing a calculation with differen-
tials) you discover the equation (*) above, then you know the derivative of f as well:

d(f(x)) B d(x?) ~ 2zdx
dx odz dz

fl(z) = = 2.

Whichever of these facts you discover first, once you know them, you know something even more general:
d(u?) = 2udu.

(The power to derive this from equation (*) is the Chain Rule.) The value of this is that « can be any ex-
pression whatsoever; for example, if u = 22 again, then

d(z?) = d((2*)*) = 2(«?) d(2?) = 22° (22 dz) = 42® da.
So now you have learnt a new derivative, without having to calculate it from scratch.

Rules of differentiation

Every theorem about derivatives of functions may also be expressed as a theorem about differentials. Here
are the most common rules:

The Constant Rule: d(K) = 0 if K is constant.

The Sum Rule: d(u + v) = du + dw.

The Translate Rule: d(u + C') = du if C' is constant.
The Difference Rule: d(u — v) = du — dw.

The Product Rule: d(uv) = vdu + udv.

The Multiple Rule: d(ku) = kdu if k is constant.

du —ud
e The Quotient Rule: d(g> = w
v

v
e The Power Rule: d(u™) = nu""' du if n is constant.

ud
e The Root Rule: d( Vu) = {nﬂ v
u

if m is constant.

Of these, only the Constant Rule, the Sum Rule, the Product Rule, and the Power Rule are absolutely
necessary, since every other expression built out of the operations in the rules above can be built out of
the operations in these four rules. However, it is often handy to use all of these rules; it is up to you how
many of these rules to learn. (The Power Rule given here really corresponds to the Generalized Power
Rule in the textbook, because it incorporates the Chain Rule within it. The Root Rule is not in the text-
book, because a root can be algebraically transformed into a power; but the version here rationalizes the
denominator, which can be convenient.)

In addition, every time that you learn the derivative of a new function, you learn a new rule for dif-
ferentials, by applying the Chain Rule to that function. I already showed you an example of this earlier in
these notes: applying the Chain Rule to the function f(x) = 22 gives the special case of the Power Rule
for n = 2. Here are a few other functions whose derivatives you will learn, expressed as rules for differen-
tials:

o d(expu) = expudu.
du
e d(In
(inw) =
e d(sinu) = cosudu.
d(
(

cosu) = —sinu du.
du

e d(atanu) = L
u
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And more! (To be clear, exp u means e, Inu = log, u, u is in radians in sinu and cosu, and atan u is
what is also written arctanu, Tan™ ' u, or tan~! u and gives a result in radians.)

Notice that every one of these rules turns the differential on the left into a sum of terms (possibly on-
ly one term, or none in the case of the Constant Rule), each of which is an ordinary expression multiplied
by a differential (or something algebraically equivalent to this). An expression like this is called a differ-
ential form (although actually there are more general sorts of differential forms). If, when you are cal-
culating the differential of an expression, your result at any stage is not like this, then you have made a
mistake!

Defining differentials

To formally define what differentials are and prove their properties, I'll make the same assumption that I
made at the beginning of these notes, that there is an independent variable ¢ that every other variable is
a function of. Then, I said that if uw = f(t), then u|,_. = f(c). Now I'll say that, if u = f(¢) and the func-
tion f is differentiable, then
duli=c, = f'(c)h.
dt=h

More generally, if u = f(t) and v = ¢(t), then

(udv)]t=c, = f(c) g'(c)h.

Again, this is abstract, but the concrete application is straightforward; for example:

(2zdz +3da)|o=s, = 2(4)(0.05) + 3(0.05) = 0.55,
dz=0.05

(2x dz + 3y dy)| w=4,y=5, = 2(4)(0.05) + 3(5)(0.02) = 0.7.
dz=0.05,dy=0.02

(I've put small numbers in for dz and dy, because this is most often what comes up in practice, although
for theoretical purposes it doesn't matter.) Tt's now more common to be given only partial information;
for example:

(2zdx +3dx)|,_, =2(4)dz + 3dx = 11dz,

2z dx + 3y dy)| v=4, = 2(4)dz + 3(5)dy = 8dx + 15dy.
y=>5

Notice that you don't plug in the values of x and y inside the differential operator d; if you're not given
values of dxr and dy, then those differentials must remain in the answer.

While expressions like the above come up occasionally (see the discussion of linear approximation lat-
er on), the main purpose of a precise definition is to prove theorems. (That's how we can be sure that
the rules of Calculus will always work, at least when the definitions that prove them can be made to ap-
ply.) Earlier T gave a list of rules for differentials; we can prove these using the precise definition of differ-
ential and the known rules for derivatives of functions. For example, if u = f(¢) and v = g(t), then uv =

F(£)g(t) = (£9)(t). Therefore,

d(wo)t=c, = (f9) () h = (£ () g(e) + f(e) g'()) h = g(c) F(e) h+ f(e) g'(e) h = (v du + wdv)| =,

t=h dt=h

Here, I've used the formal definition of differential along with the Product Rule for derivatives of func-
tions. The conclusion is that d(uv) and vdu + udv always evaluate to the same result, so

d(uv) = vdu + udv,

which is the Product Rule for differentials. In the same way, all of the rules for differentials follow from
rules for derivatives of functions.
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The Chain Rule is an important special case, so I'll prove it too. If u = g(¢) and f is any function,
then f(u) = f(g(t)) = (f o g)(t), so if f is differentiable, then

d(f(u))

t=c, -
dt=h

e, =4((F00)®)|i=c, = (Fog) (@) =1(gc))g(e)h = (f'(u) du)

Again, I used the definition of differential and the Chain Rule for functions, and my conclusion is the Chain
Rule for differentials:

d(f(u)) = f'(u) du

whenever f is a differentiable function.

It's not really essential to assume that there exists a single independent variable that every other vari-
able is a function of, and we'll stop making that assumption in Calculus 3 (if you stick around that long).
Then the formal definition will become a little trickier, but all of the rules for differentials will continue to
apply exactly as I stated them above.

5 Using differentials

The main technique for using differentials is simply to take the differential of both sides of an equation.
However, you may only do this to an equation that holds generally, but not to an equation that holds only
for particular values of the variables. (Ultimately, this is because d is an operator, not a function, so it
must be applied to entire functions, not only to particular values of those functions.)

The simplest case is an equation such as y = exp (22), when we want the derivative of y with respect
to x. So:

y = exp (2%);
dy = d(exp (2?)) = exp (2%) d(2?) = exp (2?) - 2z dz = 2z exp (2?) dx;
d
ﬁ = 2z exp (z°).

Now we have the derivative. If we want the second derivative, then we do this again:

dy/dz = 2z exp (2?);
d(dy/dz) = d(2:13 exp (x2)> = exp (2?) d(2z) + 2xd(exp (x2))
=exp (22) - 2dz + 2z - 2z exp (2%) do = (2exp (2?) + 4a? exp (2?)) du;

d(dy/dz)

e 2exp (22) + 422 exp (2?).

(d/dw)*y =

Now we have the second derivative (also written d?y/dz?).

The previous example began with an equation solved for y. But we don't need this; suppose instead
that we have y° + 22 = 2° + y (which cannot be solved for either variable using the usual algebraic oper-
ations of addition, subtraction, multiplication, division, powers, and roots). Undaunted, we forge ahead
anyway:

Y +a? =2 +y;
d(y” +2%) = d(a” +y);
d(y) +d(2?) = d(2°) + dy;
5y5~tdy 4+ 22° 7t de = 52571 da + dy;
5yt dy — dy = bat do — 22 da;
(5y* —1)dy = (52" — 22) dx;
dy 5zt — 2z

de ~ Byt—-1"

This process is called implicit differentiation.
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The second derivative is a little more straightforward at first (or it would be if we didn't have to use
the Quotient Rule), but there is a twist at the end:

Szt — 2z
dy/dz = 51/47—1;
d(dy/dz) = d<5x4 - Qx) _ (5y* — 1) d(52* — 2x) — (5z* — 2z) d(5y* — 1)
Syt —1 (5y* —1)°
~ (5y* —1)(202® — 2) da — (5a* — 22)(20y%) dy
B (5y" —1)°
20x3 — 2 20y (5x* — 2z)
(d/dz)?y = d(dy/dz) _ 202 — 2 3 20y3 (5 — 2z) dy
dz Syt —1 (5y* — 1)2 dz
2023 — 2 20y3(5x* — 22) Hat — 27
T i1 (5% — 1)2 Syt —1

(which could be simplified further). Notice that I substitute the known expression for dy/dz in the last
step.

Another handy application of differentials is the case where both quantities z and y may be expressed
as functions of some other quantity ¢. (For the purposes of formal definitions, we always assume that this
is possible, but now we're really going to use it.) If we start with the same equation as above, then this
will give us an equation relating the derivatives with respect to t:

v +a? =2’ +y;
d(y® +2%) = d(a” +y);
d(y®) +d(z®) = d(z°) + dy;
5y° L dy + 2227 da = 525"t da + dy;
de dy

dy dx
19y ar _ . 4dr  dy
oY dt+2xdt %% dt+dt'

If we have information about one or both of these derivatives, then this equation will often give us useful
information to solve a problem. This situation is called related rates, since derivatives can be viewed as

rates of change (especially derivatives with respect to time ¢, although the ¢ in the equation above doesn't

have to stand for time).
When we get to integrals, differentials become so useful that even the textbook starts using them, but

I'll save that for later.
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