
Di�erentials

A word about notation: As I remarked earlier (on page 3 of the main notes), when y = f(x), we an write

dy/dx = f ′(x); both sides of the latter equation are notation for a derivative, whih is one of the things

that di�erentiation produes. The left-hand side means the derivative of y with respet to x, while f ′
in

the right-hand side is a funtion whih is the derivative of the original funtion f . To say that the deriva-

tive of f is f ′
suggests that the derivative is a basi onept, not a ombination of anything more ompli-

ated, and that is how the textbook approahes derivatives. But the left-hand side suggests that a deriva-

tive is a ratio, the result of dividing dy by dx, and this is how they were originally used. As for dy and dx
themselves, they are the di�erentials of y and x; a di�erential is another thing that di�erentiation pro-

dues.

1 Di�erentials

Many alulations in alulus are easier to do using di�erentials. Furthermore, di�erentials and the related

di�erential forms are often used in appliations, espeially (but not only) to physis. The o�ial textbook

overs di�erentials (in Setion 3.11), but inompletely and only in one minor appliation. It then uses dif-

ferentials again later (mostly in material for Calulus 2 and 3), but they are useful muh earlier. So I will

make heavy use of them.

If x is a variable quantity, then dx is the di�erential of x. You an think of dx as indiating an in-

�nitely small (in�nitesimal) hange in the value of x, or (better) the amount by whih x hanges when an

in�nitesimal hange is made (an in�nitely small hange in the value of the independent variable t). A pre-

ise de�nition is in the next setion, but you will not be tested diretly on that; what you need to know is

how to use di�erentials.

Note that dx is not d times x, and dx is also not exatly a funtion of x. Rather, x (being a variable

quantity) should itself be a funtion of some other quantity t, and dx is also a funtion of a sort; so d is an

operator : something that turns one funtion into another funtion. However, an expression like u dx does

involve multipliation: it is u times the di�erential of x.

We often divide one di�erential by another; for example, dy/dx is the result of dividing the di�eren-

tial of y by the di�erential of x. The textbook introdues this notation early to stand for the derivative

of y with respet to x, and indeed it is that; but what the book doesn t tell you is that dy/dx literally

is dy divided by dx. Unfortunately, d2y/dx2
, the seond derivative of y with respet to x, is not literally

d2y = d(dy) divided by dx2 = (dx)
2
; for this reason, I prefer the notation (d/dx)

2
y, meaning (d/dx)(d/dx)y =

(d/dx)(dy/dx) = d(dy/dx)/dx for the seond derivative.

2 The Chain Rule

The most important fat about di�erentials is this: If f is a di�erentiable funtion, then

d
Ä

f(u)
ä

= f ′(u) du.

That is, the di�erential of f(u) equals f ′(u) times the di�erential of u, where f ′
is the derivative of the

funtion f . This fat not only shows the relationship between di�erentials and derivatives, but also (be-

ause u ould be any quantity) it enapsulates the Chain Rule in di�erential form. The Chain Rule is an

important priniple in alulus, whih is often di�ult to learn how to use; but with di�erentials it is easy.

In partiular, if y = f(x), then

dy

dx
=

d
Ä

f(x)
ä

dx
=

f ′(x) dx

dx
= f ′(x),

so dy divided by dx really is the derivative.

For a better example, suppose that you have disovered (say from the de�nition as a limit) that the

derivative of f(x) = x2
is f ′(x) = 2x. Then this fat an be expressed in di�erential form:

(*)d(x2) = 2x dx
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(beause d(x2) = d
Ä

f(x)
ä

= f ′(x) dx = 2x dx). Conversely, if (by performing a alulation with di�eren-

tials) you disover the equation (*) above, then you know the derivative of f as well:

f ′(x) =
d
Ä

f(x)
ä

dx
=

d(x2)

dx
=

2x dx

dx
= 2x.

Whihever of these fats you disover �rst, one you know them, you know something even more general:

d(u2) = 2u du.

(The power to derive this from equation (*) is the Chain Rule.) The value of this is that u an be any ex-

pression whatsoever; for example, if u = x2
again, then

d(x4) = d
Ä

(x2)
2
ä

= 2(x2) d(x2) = 2x2(2x dx) = 4x3 dx.

So now you have learnt a new derivative, without having to alulate it from srath.

3 Rules of di�erentiation

Every theorem about derivatives of funtions may also be expressed as a theorem about di�erentials. Here

are the most ommon rules:

• The Constant Rule: d(K) = 0 if K is onstant.

• The Sum Rule: d(u+ v) = du+ dv.
• The Translate Rule: d(u+ C) = du if C is onstant.

• The Di�erene Rule: d(u− v) = du− dv.
• The Produt Rule: d(uv) = v du+ u dv.
• The Multiple Rule: d(ku) = k du if k is onstant.

• The Quotient Rule: d

Å

u

v

ã

=
v du− u dv

v2
.

• The Power Rule: d(un) = nun−1 du if n is onstant.

• The Root Rule: d( m
√
u) =

m
√
u du

mu
if m is onstant.

Of these, only the Constant Rule, the Sum Rule, the Produt Rule, and the Power Rule are absolutely

neessary, sine every other expression built out of the operations in the rules above an be built out of

the operations in these four rules. However, it is often handy to use all of these rules; it is up to you how

many of these rules to learn. (The Power Rule given here really orresponds to the Generalized Power

Rule in the textbook, beause it inorporates the Chain Rule within it. The Root Rule is not in the text-

book, beause a root an be algebraially transformed into a power; but the version here rationalizes the

denominator, whih an be onvenient.)

In addition, every time that you learn the derivative of a new funtion, you learn a new rule for dif-

ferentials, by applying the Chain Rule to that funtion. I already showed you an example of this earlier in

these notes: applying the Chain Rule to the funtion f(x) = x2
gives the speial ase of the Power Rule

for n = 2. Here are a few other funtions whose derivatives you will learn, expressed as rules for di�eren-

tials:

• d(expu) = expu du.

• d(lnu) =
du

u
.

• d(sinu) = cosu du.
• d(cosu) = − sinu du.

• d(atanu) =
du

u2 + 1
.
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And more! (To be lear, expu means eu, lnu = loge u, u is in radians in sinu and cosu, and atanu is

what is also written arctanu, Tan−1 u, or tan−1 u and gives a result in radians.)

Notie that every one of these rules turns the di�erential on the left into a sum of terms (possibly on-

ly one term, or none in the ase of the Constant Rule), eah of whih is an ordinary expression multiplied

by a di�erential (or something algebraially equivalent to this). An expression like this is alled a di�er-

ential form (although atually there are more general sorts of di�erential forms). If, when you are al-

ulating the di�erential of an expression, your result at any stage is not like this, then you have made a

mistake!

4 De�ning di�erentials

To formally de�ne what di�erentials are and prove their properties, I ll make the same assumption that I

made at the beginning of these notes, that there is an independent variable t that every other variable is

a funtion of. Then, I said that if u = f(t), then u|t=c = f(c). Now I ll say that, if u = f(t) and the fun-

tion f is di�erentiable, then

du| t=c,
dt=h

= f ′(c)h.

More generally, if u = f(t) and v = g(t), then

(u dv)| t=c,
dt=h

= f(c) g′(c)h.

Again, this is abstrat, but the onrete appliation is straightforward; for example:

(2x dx+ 3dx)|x=4,
dx=0.05

= 2(4)(0.05) + 3(0.05) = 0.55,

(2x dx+ 3y dy)|x=4,y=5,
dx=0.05,dy=0.02

= 2(4)(0.05) + 3(5)(0.02) = 0.7.

(I ve put small numbers in for dx and dy, beause this is most often what omes up in pratie, although

for theoretial purposes it doesn t matter.) It s now more ommon to be given only partial information;

for example:

(2x dx+ 3dx)|x=4
= 2(4) dx+ 3dx = 11dx,

(2x dx+ 3y dy)|x=4,
y=5

= 2(4) dx+ 3(5) dy = 8dx+ 15dy.

Notie that you don

′
t plug in the values of x and y inside the di�erential operator d; if you re not given

values of dx and dy, then those di�erentials must remain in the answer.

While expressions like the above ome up oasionally (see the disussion of linear approximation lat-

er on), the main purpose of a preise de�nition is to prove theorems. (That s how we an be sure that

the rules of Calulus will always work, at least when the de�nitions that prove them an be made to ap-

ply.) Earlier I gave a list of rules for di�erentials; we an prove these using the preise de�nition of di�er-

ential and the known rules for derivatives of funtions. For example, if u = f(t) and v = g(t), then uv =
f(t) g(t) = (fg)(t). Therefore,

d(uv)| t=c,
dt=h

= (fg)
′

(c)h =
Ä

f ′(c) g(c) + f(c) g′(c)
ä

h = g(c) f ′(c)h+ f(c) g′(c)h = (v du+ u dv)| t=c,
dt=h

.

Here, I ve used the formal de�nition of di�erential along with the Produt Rule for derivatives of fun-

tions. The onlusion is that d(uv) and v du+ u dv always evaluate to the same result, so

d(uv) = v du+ u dv,

whih is the Produt Rule for di�erentials. In the same way, all of the rules for di�erentials follow from

rules for derivatives of funtions.
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The Chain Rule is an important speial ase, so I ll prove it too. If u = g(t) and f is any funtion,

then f(u) = f(g(t)) = (f ◦ g)(t), so if f is di�erentiable, then

d
Ä

f(u)
ä

∣

∣

∣ t=c,
dt=h

= d
Ä

(f ◦ g)(t)
ä

∣

∣

∣ t=c,
dt=h

= (f ◦ g)′(c)h = f ′

Ä

g(c)
ä

g′(c)h =
Ä

f ′(u) du
ä

∣

∣

∣ t=c,
dt=h

.

Again, I used the de�nition of di�erential and the Chain Rule for funtions, and my onlusion is the Chain

Rule for di�erentials:

d
Ä

f(u)
ä

= f ′(u) du

whenever f is a di�erentiable funtion.

It s not really essential to assume that there exists a single independent variable that every other vari-

able is a funtion of, and we ll stop making that assumption in Calulus 3 (if you stik around that long).

Then the formal de�nition will beome a little trikier, but all of the rules for di�erentials will ontinue to

apply exatly as I stated them above.

5 Using di�erentials

The main tehnique for using di�erentials is simply to take the di�erential of both sides of an equation.

However, you may only do this to an equation that holds generally , but not to an equation that holds only

for partiular values of the variables. (Ultimately, this is beause d is an operator, not a funtion, so it

must be applied to entire funtions, not only to partiular values of those funtions.)

The simplest ase is an equation suh as y = exp (x2), when we want the derivative of y with respet

to x. So:
y = exp (x2);

dy = d(exp (x2)) = exp (x2) d(x2) = exp (x2) · 2x dx = 2x exp (x2) dx;

dy

dx
= 2x exp (x2).

Now we have the derivative. If we want the seond derivative, then we do this again:

dy/dx = 2x exp (x2);

d(dy/dx) = d
Ä

2x exp (x2)
ä

= exp (x2) d(2x) + 2x d
Ä

exp (x2)
ä

= exp (x2) · 2 dx+ 2x · 2x exp (x2) dx = (2 exp (x2) + 4x2 exp (x2)) dx;

(d/dx)
2
y =

d(dy/dx)

dx
= 2 exp (x2) + 4x2 exp (x2).

Now we have the seond derivative (also written d2y/dx2
).

The previous example began with an equation solved for y. But we don t need this; suppose instead

that we have y5 + x2 = x5 + y (whih annot be solved for either variable using the usual algebrai oper-

ations of addition, subtration, multipliation, division, powers, and roots). Undaunted, we forge ahead

anyway:

y5 + x2 = x5 + y;

d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;

5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4 dy − dy = 5x4 dx− 2x dx;

(5y4 − 1) dy = (5x4 − 2x) dx;

dy

dx
=

5x4 − 2x

5y4 − 1
.

This proess is alled impliit di�erentiation.
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The seond derivative is a little more straightforward at �rst (or it would be if we didn t have to use

the Quotient Rule), but there is a twist at the end:

dy/dx =
5x4 − 2x

5y4 − 1
;

d(dy/dx) = d

Å

5x4 − 2x

5y4 − 1

ã

=
(5y4 − 1) d(5x4 − 2x)− (5x4 − 2x) d(5y4 − 1)

(5y4 − 1)
2

=
(5y4 − 1)(20x3 − 2) dx− (5x4 − 2x)(20y3) dy

(5y4 − 1)
2

=
20x3 − 2

5y4 − 1
dx− 20y3(5x4 − 2x)

(5y4 − 1)
2

dy;

(d/dx)
2
y =

d(dy/dx)

dx
=

20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

dy

dx

=
20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

5x4 − 2x

5y4 − 1

(whih ould be simpli�ed further). Notie that I substitute the known expression for dy/dx in the last

step.

Another handy appliation of di�erentials is the ase where both quantities x and y may be expressed

as funtions of some other quantity t. (For the purposes of formal de�nitions, we always assume that this

is possible, but now we re really going to use it.) If we start with the same equation as above, then this

will give us an equation relating the derivatives with respet to t:

y5 + x2 = x5 + y;

d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;

5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4
dy

dt
+ 2x

dx

dt
= 5x4

dx

dt
+

dy

dt
.

If we have information about one or both of these derivatives, then this equation will often give us useful

information to solve a problem. This situation is alled related rates, sine derivatives an be viewed as

rates of hange (espeially derivatives with respet to time t, although the t in the equation above doesn t

have to stand for time).

When we get to integrals, di�erentials beome so useful that even the textbook starts using them, but

I ll save that for later.
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