
Di�erentials

A word about notation: As I remarked earlier (on page 3 of the main notes), when y = f(x), we 
an write

dy/dx = f ′(x); both sides of the latter equation are notation for a derivative, whi
h is one of the things

that di�erentiation produ
es. The left-hand side means the derivative of y with respe
t to x, while f ′
in

the right-hand side is a fun
tion whi
h is the derivative of the original fun
tion f . To say that the deriva-

tive of f is f ′
suggests that the derivative is a basi
 
on
ept, not a 
ombination of anything more 
ompli-


ated, and that is how the textbook approa
hes derivatives. But the left-hand side suggests that a deriva-

tive is a ratio, the result of dividing dy by dx, and this is how they were originally used. As for dy and dx
themselves, they are the di�erentials of y and x; a di�erential is another thing that di�erentiation pro-

du
es.

1 Di�erentials

Many 
al
ulations in 
al
ulus are easier to do using di�erentials. Furthermore, di�erentials and the related

di�erential forms are often used in appli
ations, espe
ially (but not only) to physi
s. The o�
ial textbook


overs di�erentials (in Se
tion 3.11), but in
ompletely and only in one minor appli
ation. It then uses dif-

ferentials again later (mostly in material for Cal
ulus 2 and 3), but they are useful mu
h earlier. So I will

make heavy use of them.

If x is a variable quantity, then dx is the di�erential of x. You 
an think of dx as indi
ating an in-

�nitely small (in�nitesimal) 
hange in the value of x, or (better) the amount by whi
h x 
hanges when an

in�nitesimal 
hange is made (an in�nitely small 
hange in the value of the independent variable t). A pre-


ise de�nition is in the next se
tion, but you will not be tested dire
tly on that; what you need to know is

how to use di�erentials.

Note that dx is not d times x, and dx is also not exa
tly a fun
tion of x. Rather, x (being a variable

quantity) should itself be a fun
tion of some other quantity t, and dx is also a fun
tion of a sort; so d is an

operator : something that turns one fun
tion into another fun
tion. However, an expression like u dx does

involve multipli
ation: it is u times the di�erential of x.

We often divide one di�erential by another; for example, dy/dx is the result of dividing the di�eren-

tial of y by the di�erential of x. The textbook introdu
es this notation early to stand for the derivative

of y with respe
t to x, and indeed it is that; but what the book doesn t tell you is that dy/dx literally

is dy divided by dx. Unfortunately, d2y/dx2
, the se
ond derivative of y with respe
t to x, is not literally

d2y = d(dy) divided by dx2 = (dx)
2
; for this reason, I prefer the notation (d/dx)

2
y, meaning (d/dx)(d/dx)y =

(d/dx)(dy/dx) = d(dy/dx)/dx for the se
ond derivative.

2 The Chain Rule

The most important fa
t about di�erentials is this: If f is a di�erentiable fun
tion, then

d
Ä

f(u)
ä

= f ′(u) du.

That is, the di�erential of f(u) equals f ′(u) times the di�erential of u, where f ′
is the derivative of the

fun
tion f . This fa
t not only shows the relationship between di�erentials and derivatives, but also (be-


ause u 
ould be any quantity) it en
apsulates the Chain Rule in di�erential form. The Chain Rule is an

important prin
iple in 
al
ulus, whi
h is often di�
ult to learn how to use; but with di�erentials it is easy.

In parti
ular, if y = f(x), then

dy

dx
=

d
Ä

f(x)
ä

dx
=

f ′(x) dx

dx
= f ′(x),

so dy divided by dx really is the derivative.

For a better example, suppose that you have dis
overed (say from the de�nition as a limit) that the

derivative of f(x) = x2
is f ′(x) = 2x. Then this fa
t 
an be expressed in di�erential form:

(*)d(x2) = 2x dx
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(be
ause d(x2) = d
Ä

f(x)
ä

= f ′(x) dx = 2x dx). Conversely, if (by performing a 
al
ulation with di�eren-

tials) you dis
over the equation (*) above, then you know the derivative of f as well:

f ′(x) =
d
Ä

f(x)
ä

dx
=

d(x2)

dx
=

2x dx

dx
= 2x.

Whi
hever of these fa
ts you dis
over �rst, on
e you know them, you know something even more general:

d(u2) = 2u du.

(The power to derive this from equation (*) is the Chain Rule.) The value of this is that u 
an be any ex-

pression whatsoever; for example, if u = x2
again, then

d(x4) = d
Ä

(x2)
2
ä

= 2(x2) d(x2) = 2x2(2x dx) = 4x3 dx.

So now you have learnt a new derivative, without having to 
al
ulate it from s
rat
h.

3 Rules of di�erentiation

Every theorem about derivatives of fun
tions may also be expressed as a theorem about di�erentials. Here

are the most 
ommon rules:

• The Constant Rule: d(K) = 0 if K is 
onstant.

• The Sum Rule: d(u+ v) = du+ dv.
• The Translate Rule: d(u+ C) = du if C is 
onstant.

• The Di�eren
e Rule: d(u− v) = du− dv.
• The Produ
t Rule: d(uv) = v du+ u dv.
• The Multiple Rule: d(ku) = k du if k is 
onstant.

• The Quotient Rule: d

Å

u

v

ã

=
v du− u dv

v2
.

• The Power Rule: d(un) = nun−1 du if n is 
onstant.

• The Root Rule: d( m
√
u) =

m
√
u du

mu
if m is 
onstant.

Of these, only the Constant Rule, the Sum Rule, the Produ
t Rule, and the Power Rule are absolutely

ne
essary, sin
e every other expression built out of the operations in the rules above 
an be built out of

the operations in these four rules. However, it is often handy to use all of these rules; it is up to you how

many of these rules to learn. (The Power Rule given here really 
orresponds to the Generalized Power

Rule in the textbook, be
ause it in
orporates the Chain Rule within it. The Root Rule is not in the text-

book, be
ause a root 
an be algebrai
ally transformed into a power; but the version here rationalizes the

denominator, whi
h 
an be 
onvenient.)

In addition, every time that you learn the derivative of a new fun
tion, you learn a new rule for dif-

ferentials, by applying the Chain Rule to that fun
tion. I already showed you an example of this earlier in

these notes: applying the Chain Rule to the fun
tion f(x) = x2
gives the spe
ial 
ase of the Power Rule

for n = 2. Here are a few other fun
tions whose derivatives you will learn, expressed as rules for di�eren-

tials:

• d(expu) = expu du.

• d(lnu) =
du

u
.

• d(sinu) = cosu du.
• d(cosu) = − sinu du.

• d(atanu) =
du

u2 + 1
.
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And more! (To be 
lear, expu means eu, lnu = loge u, u is in radians in sinu and cosu, and atanu is

what is also written arctanu, Tan−1 u, or tan−1 u and gives a result in radians.)

Noti
e that every one of these rules turns the di�erential on the left into a sum of terms (possibly on-

ly one term, or none in the 
ase of the Constant Rule), ea
h of whi
h is an ordinary expression multiplied

by a di�erential (or something algebrai
ally equivalent to this). An expression like this is 
alled a di�er-

ential form (although a
tually there are more general sorts of di�erential forms). If, when you are 
al-


ulating the di�erential of an expression, your result at any stage is not like this, then you have made a

mistake!

4 De�ning di�erentials

To formally de�ne what di�erentials are and prove their properties, I ll make the same assumption that I

made at the beginning of these notes, that there is an independent variable t that every other variable is

a fun
tion of. Then, I said that if u = f(t), then u|t=c = f(c). Now I ll say that, if u = f(t) and the fun
-

tion f is di�erentiable, then

du| t=c,
dt=h

= f ′(c)h.

More generally, if u = f(t) and v = g(t), then

(u dv)| t=c,
dt=h

= f(c) g′(c)h.

Again, this is abstra
t, but the 
on
rete appli
ation is straightforward; for example:

(2x dx+ 3dx)|x=4,
dx=0.05

= 2(4)(0.05) + 3(0.05) = 0.55,

(2x dx+ 3y dy)|x=4,y=5,
dx=0.05,dy=0.02

= 2(4)(0.05) + 3(5)(0.02) = 0.7.

(I ve put small numbers in for dx and dy, be
ause this is most often what 
omes up in pra
ti
e, although

for theoreti
al purposes it doesn t matter.) It s now more 
ommon to be given only partial information;

for example:

(2x dx+ 3dx)|x=4
= 2(4) dx+ 3dx = 11dx,

(2x dx+ 3y dy)|x=4,
y=5

= 2(4) dx+ 3(5) dy = 8dx+ 15dy.

Noti
e that you don

′
t plug in the values of x and y inside the di�erential operator d; if you re not given

values of dx and dy, then those di�erentials must remain in the answer.

While expressions like the above 
ome up o

asionally (see the dis
ussion of linear approximation lat-

er on), the main purpose of a pre
ise de�nition is to prove theorems. (That s how we 
an be sure that

the rules of Cal
ulus will always work, at least when the de�nitions that prove them 
an be made to ap-

ply.) Earlier I gave a list of rules for di�erentials; we 
an prove these using the pre
ise de�nition of di�er-

ential and the known rules for derivatives of fun
tions. For example, if u = f(t) and v = g(t), then uv =
f(t) g(t) = (fg)(t). Therefore,

d(uv)| t=c,
dt=h

= (fg)
′

(c)h =
Ä

f ′(c) g(c) + f(c) g′(c)
ä

h = g(c) f ′(c)h+ f(c) g′(c)h = (v du+ u dv)| t=c,
dt=h

.

Here, I ve used the formal de�nition of di�erential along with the Produ
t Rule for derivatives of fun
-

tions. The 
on
lusion is that d(uv) and v du+ u dv always evaluate to the same result, so

d(uv) = v du+ u dv,

whi
h is the Produ
t Rule for di�erentials. In the same way, all of the rules for di�erentials follow from

rules for derivatives of fun
tions.
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The Chain Rule is an important spe
ial 
ase, so I ll prove it too. If u = g(t) and f is any fun
tion,

then f(u) = f(g(t)) = (f ◦ g)(t), so if f is di�erentiable, then

d
Ä

f(u)
ä

∣

∣

∣ t=c,
dt=h

= d
Ä

(f ◦ g)(t)
ä

∣

∣

∣ t=c,
dt=h

= (f ◦ g)′(c)h = f ′

Ä

g(c)
ä

g′(c)h =
Ä

f ′(u) du
ä

∣

∣

∣ t=c,
dt=h

.

Again, I used the de�nition of di�erential and the Chain Rule for fun
tions, and my 
on
lusion is the Chain

Rule for di�erentials:

d
Ä

f(u)
ä

= f ′(u) du

whenever f is a di�erentiable fun
tion.

It s not really essential to assume that there exists a single independent variable that every other vari-

able is a fun
tion of, and we ll stop making that assumption in Cal
ulus 3 (if you sti
k around that long).

Then the formal de�nition will be
ome a little tri
kier, but all of the rules for di�erentials will 
ontinue to

apply exa
tly as I stated them above.

5 Using di�erentials

The main te
hnique for using di�erentials is simply to take the di�erential of both sides of an equation.

However, you may only do this to an equation that holds generally , but not to an equation that holds only

for parti
ular values of the variables. (Ultimately, this is be
ause d is an operator, not a fun
tion, so it

must be applied to entire fun
tions, not only to parti
ular values of those fun
tions.)

The simplest 
ase is an equation su
h as y = exp (x2), when we want the derivative of y with respe
t

to x. So:
y = exp (x2);

dy = d(exp (x2)) = exp (x2) d(x2) = exp (x2) · 2x dx = 2x exp (x2) dx;

dy

dx
= 2x exp (x2).

Now we have the derivative. If we want the se
ond derivative, then we do this again:

dy/dx = 2x exp (x2);

d(dy/dx) = d
Ä

2x exp (x2)
ä

= exp (x2) d(2x) + 2x d
Ä

exp (x2)
ä

= exp (x2) · 2 dx+ 2x · 2x exp (x2) dx = (2 exp (x2) + 4x2 exp (x2)) dx;

(d/dx)
2
y =

d(dy/dx)

dx
= 2 exp (x2) + 4x2 exp (x2).

Now we have the se
ond derivative (also written d2y/dx2
).

The previous example began with an equation solved for y. But we don t need this; suppose instead

that we have y5 + x2 = x5 + y (whi
h 
annot be solved for either variable using the usual algebrai
 oper-

ations of addition, subtra
tion, multipli
ation, division, powers, and roots). Undaunted, we forge ahead

anyway:

y5 + x2 = x5 + y;

d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;

5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4 dy − dy = 5x4 dx− 2x dx;

(5y4 − 1) dy = (5x4 − 2x) dx;

dy

dx
=

5x4 − 2x

5y4 − 1
.

This pro
ess is 
alled impli
it di�erentiation.
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The se
ond derivative is a little more straightforward at �rst (or it would be if we didn t have to use

the Quotient Rule), but there is a twist at the end:

dy/dx =
5x4 − 2x

5y4 − 1
;

d(dy/dx) = d

Å

5x4 − 2x

5y4 − 1

ã

=
(5y4 − 1) d(5x4 − 2x)− (5x4 − 2x) d(5y4 − 1)

(5y4 − 1)
2

=
(5y4 − 1)(20x3 − 2) dx− (5x4 − 2x)(20y3) dy

(5y4 − 1)
2

=
20x3 − 2

5y4 − 1
dx− 20y3(5x4 − 2x)

(5y4 − 1)
2

dy;

(d/dx)
2
y =

d(dy/dx)

dx
=

20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

dy

dx

=
20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

5x4 − 2x

5y4 − 1

(whi
h 
ould be simpli�ed further). Noti
e that I substitute the known expression for dy/dx in the last

step.

Another handy appli
ation of di�erentials is the 
ase where both quantities x and y may be expressed

as fun
tions of some other quantity t. (For the purposes of formal de�nitions, we always assume that this

is possible, but now we re really going to use it.) If we start with the same equation as above, then this

will give us an equation relating the derivatives with respe
t to t:

y5 + x2 = x5 + y;

d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;

5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4
dy

dt
+ 2x

dx

dt
= 5x4

dx

dt
+

dy

dt
.

If we have information about one or both of these derivatives, then this equation will often give us useful

information to solve a problem. This situation is 
alled related rates, sin
e derivatives 
an be viewed as

rates of 
hange (espe
ially derivatives with respe
t to time t, although the t in the equation above doesn t

have to stand for time).

When we get to integrals, di�erentials be
ome so useful that even the textbook starts using them, but

I ll save that for later.
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