
Notes Math-2080-es31 2014 March 17

One of the basic applications of vector calculus �arguably the original application� is the classical theo-
ry of electromagnetic �elds that was fully worked almost 150 years ago by James Clerk Maxwell. Maxwell s
equations of electromagnetism have been expressed in many formalisms over the years: explicitly using
partial derivatives of component functions (the way Maxwell presented them), using quaternions (like com-
plex numbers with three imaginary dimensions, which is how Maxwell really thought of them), using the
vector calculus of Oliver Heaviside and Willard Gibbs (the simpli�cation of quaternionic calculus that is
taught in the course textbook), using di�erential forms in three-dimensional space (which is how I usual-
ly think of them), and using di�erential forms in four-dimensional space-time. Each is simpler and more
elegant than the last.

All of the di�erential forms appearing in these notes will be oriented or pseudo-oriented exterior dif-
ferential forms. To keep the notation simple, I will leave out the symbol `∧' in the wedge product and the
exterior derivative. So if you see two di�erentials (or di�erential forms) multiplied together, then they re
being multiplied by the wedge product; and if you see the di�erential of a di�erential form, then it s the
exterior di�erential. Also, unlike in the speci�c problems that you ve done in this course, I ll use variables
that refer directly to di�erential forms; typically, these variables with be in a fancy calligraphic font.

The quantities in the equations
To be very de�nite, I will give operational de�nitions of the physical quantities that appear in Maxwell s
equations, describing how you would (in principle) measure them.

I will take as a basic notion the idea of electric charge. Electric charge may be positive or negative,
and the di�erence between these is perfectly arbitrary (which is in some ways similar to the right-hand
rule); what s important is that there is a di�erence, and positive and negative charges cancel each other
out. In any given region of space, there is a certain total charge in that region, which we ll assume is given
by integrating a continuous rank-3 pseudo-oriented di�erential form, the charge form Q. (The existence
of this di�erential form is actually a theorem, under certain assumptions about additivity and continuity
of charge.) We may write

Q = ρ d̄V = ρ dxdy dz,

where the scalar �eld ρ is the charge density. The SI unit of charge is the coulomb (named after Charles-
Augustin de Coulomb, who discovered the inverse-square law of static electricity); charge density is mea-
sured in coulombs per cubic metre.

Together with electric charge, we have electric current, which is the �ow of electric charge. We
measure current through a pseudo-oriented surface; the total rate (with respect to time) at which charge
moves through the surface in the given direction is the current through that surface. (Negative charge
moving through the surface in the negative direction counts positively, like positive charge moving in the
positive direction; negative charge moving in the positive direction and positive charge moving in the neg-
ative direction count negatively.) The current through a pseudo-oriented surface is given by integrating a
continuous rank-2 pseudo-oriented form, the current form J . We may write

J = J · d̄S = J1 dy dz + J2 dz dx + J3 dx dy,

where the vector �eld J is the current density. The SI unit of current is the coulomb per second, or am-
pere (named after Andr�e-Marie Amp�ere, who discovered Ampere s Law, discussed below); current density
is measured in amperes per square metre.

Based on these, we can now de�ne some other quantities. When the work (transfer of energy) done on
a charged object is proportional to its charge, we consider that the work is done by an electric �eld. If a
charged object travels through an electric �eld along an oriented curve, then the work done on the particle
is the product of the particle s charge and the electric potential along the curve. Since the charge on
any actual object is spread out over space and charge (as you ll see below) also a�ects the electric �eld,
we really need to consider the limiting case of an object with both in�nitesimal volume and in�nitesimal
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charge density. The electric potential along an oriented curve is given by integrating a continuous rank-1
oriented form, the electric potential form E . We may write

E = E · dr = E1 dx + E2 dy + E3 dz,

where the vector �eld E is the electric �eld strength. The SI unit of electric potential is the joule per
coulomb, or volt; electric �eld strength is measured in volts per metre.

The electric �eld not only a�ects charges but also is created by them. As charges move in response
to the work done on them by the electric �eld, this tends to cancel out the original �eld. (This is a gen-
eral theme in electromagnetism, that any phenomenon has e�ects that counteract the original cause.) In
particular, if a sheet of material that conducts electric current (a Faraday shield) is placed in an electric
�eld, then the free charged particles in the shield will move to opposite sides, blocking out the electric �eld
in the interior of the sheet. The electric �ux through a pseudo-oriented surface is the total charge in-
duced by the electric �eld on the outside of a continuous Faraday shield along that surface (or opposite
the charge induced on the inside of the shield). Again, we must really consider a limiting case, that of a
sheet with in�nitesimal thickness and in�nite conductance. The electric �ux through a pseudo-oriented
surface is given by integrating a continuous rank-2 pseudo-oriented form, the electric �ux form D. We
may write

D = D · d̄S = D1 dy dz + D2 dz dx + D3 dxdy,

where the vector �eld D is the electric displacement. The SI unit of electric �ux is the coulomb again;
electric displacement is measured in coulombs per square metre.

Besides the electric �eld, there is also a magnetic �eld. Although this may be thought of as dealing
with magnetic poles (instead of electric charges), magnetic poles are not individual objects but always
come in pairs. We now understand (and Maxwell already understood) that magnetism deals with electric
currents, with a north pole and a south pole appearing on either side of a rotating current. If a wire with
current �owing through it travels through a magnetic �eld, then it traces out a surface, which we orient
(not pseudo-orient!) as the direction of travel followed by the direction of the current. Then the work done
on the wire is the product of the wire s current and the magnetic �ux on the surface. Since any actu-
al conducting wire has some thickness and current (as you ll see below) also a�ects the magnetic �eld, we
really need to consider the limiting case of a wire with both in�nitesimal thickness and in�nitesimal cur-
rent density. The magnetic �ux on an oriented surface is given by integrating a continuous rank-2 oriented
form, the magnetic �ux form B. We may write

B = B · d̄S = B1 dy dz + B2 dz dx + B3 dx dy,

where the pseudo-vector �eld B is the magnetic �ux density. The SI unit of magnetic �ux is the joule
per ampere, or weber; magnetic �ux density is measured in webers per square metre, or teslas.

Just as the electric �eld causes charges to move to counteract it, so the magnetic �eld creates cur-
rents that counteract it. In particular, if a tube of conductive material (a solenoid) is placed in a magnetic
�eld, then the �eld will induce a current on the inside of the solenoid, blocking the magnetic �eld within
the solenoid. The magnetic potential around a pseudo-oriented curve (not oriented!) is the total cur-
rent induced by the magnetic �eld in a continuous solenoid surrounding the curve in the direction opposite
the curve s pseudo-orientation. Once more, we must really consider a limiting case, that of a tube with in-
�nitesimal radius and in�nite conductance. The magnetic potential around a pseudo-oriented curve is giv-
en by integrating a continuous rank-1 pseudo-oriented form, the magnetic potential form H. We may
write

H = H · dr = H1 dx + H2 dy + H3 dz,

where the pseudo-vector �eld H is the magnetizing �eld strength. The SI unit of magnetic potential is
the ampere again; magnetizing �eld strength is measured in amperes per metre.
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The constitutive relations
Before I get to the four equations generally called Maxwell s, I need to clear something up. We have two
ways to measure an electric �eld, the electric potential along a curve (the integral of E) and the electric
�ux through a surface (the integral of D); similarly, we have two ways to measure a magnetic �eld, the
magnetic �ux on a surface (the integral of B) and the magnetic potential around a curve (the integral
of H). Since E and D measure the same physical �eld, there should be a relationship between them, and
the same for B and H. The simplest relationship would be that each of these quantities is the Hodge dual
of its partner; after all, the Hodge dual of an oriented 1-form is a pseudo-oriented 2-form, etc. (Then we
would also have E = D and B = H.) However, there are a few complications with that.

First, if we measure D and H with actual conducting materials, then (even in the limit of in�nite con-
ductance!) there will always be charges that are bound in the material, unable to be moved by the �elds,
and there will also be bound currents sometimes (as in a magnet). Thus, D and H e�ectively measure on-
ly the free charge and current. When people express Maxwell s equations using only E and B instead, they
speak of Maxwell s equations in a vacuum.

Secondly, even in vacuum, E and D are measured in di�erent units (and similarly for B and H). Up
to a point, this is expected; since volume has units of cubic metres, we expect the Hodge dual to a�ect
units. However, this only a�ects units of length, and we need more than that (in particular, the units of
charge are reversed). In vaccum, the unit conversion is done by fundamental physical constants, the elec-
tric constant ε0 and the magnetic constant µ0; then we have

∗E =
D
ε0

(so ∗D = ε0E) and
∗B = µ0H

(so ∗H = B/µ0). Ultimately, the SI units are de�ned so that ε0 is exactly

2357

727322933392π
≈ 8.85× 10−12

farads per metre and µ0 is exactly
π

2557
≈ 1.26× 10−6

henries per metre. (A farad is a square coulomb per joule, named after Michael Faraday, who discoved
Faraday s Law, below; a henry is a joule per square ampere. By the way, there are only two more SI units
related speci�cally to electromagnetism: the siemens is a farad per second, and the ohm is a henry per
second. But we will not need these here.)

In a medium, we typically have ∗E = D/ε and ∗B = µH (or D = εE and H = B/µ in terms of vector
�elds) for some constants ε and µ, the permittivity and permeability of the medium. (Then ε0 and µ0 are
respectively the permittivity and permeability of the vacuum.) Sometimes things are not so simple (for ex-
ample, the permittivity or permeability may depend on the direction); but we always have some relation-
ship between these quantities, called the constitutive relations of the material. When we use di�erential
forms instead of vector �elds, the constitutive relations are the only equations in which the Hodge dual
operator appears, hence the only place where geometric ideas (such as length, angle, and volume) play a
role; using vector �elds obscures this fact.
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Static systems
Maxwell found four equations, which I will state �rst for static systems, that is those in which the dis-
tribution of charges, currents, and �elds does not change with time. In a static system, the total current
through the boundary of any region of space must be zero, because otherwise the total charge inside that
region would be changing; this is the continuity equation

w
∂Q
J = 0,

which is not counted as one of Maxwell s four. Assuming that J is continuously di�erentiable, then the
Stokes Theorem turns this into

r
Q

dJ = 0; since this holds for any region Q, we conclude that

dJ = 0,

which is ∇ · J = 0 in terms of the current density. Like the continuity equation, each of Maxwell s equa-
tions will have an integral and di�erential form.

The simplest of Maxwell s equations is w
∂Q
B = 0,

stating that the magnetic �ux through the boundary of any region in space is zero. In other words, mag-
netic �ux, like current in a static system, �ows continuously with no sink or source. The di�erential form
is

dB = 0,
or ∇ ·B = 0 in vector calculus.

Similarly, Faraday ′s Law for static systems states that the electric potential along the boundary of
any oriented surface is zero: w

∂R
E = 0.

In di�erential form, this becomes
dE = 0,

which is ∇×E = 0 in vector calulus. Thus, E is an exact di�erential, and E is a conservative vector �eld.
Next, Gauss s Law (after Carl Gauÿ) states that the total electric �ux outward through the boundary

of any region in space equals the total electric charge contained in that region:
w

∂Q
D =

w
Q
Q.

In di�erential form,
dD = Q;

in vector calculus, ∇ ·D = ρ. Thus, unlike magnetic �ux, electric �ux has sources and sinks, which are
electric charges.

Finally, Ampere s Law for static systems states that the magnetic potential around the boundary of a
pseudo-oriented surface equals the total current through that surface:

w
∂R
H =

w
R
J .

In di�erential form,
dH = J ;

in vector calculus, ∇×H = J. Thus, currents are sources for the magnetic �eld.
The reason that the continuity equation is not counted as one of Maxwell s equations is that it actual-

ly follows from Ampere s Law. Speci�cally (in a static system), we have
w

∂Q
J =

w
∂∂Q

H = 0,

since the boundary of a boundary is empty.
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Electrodynamics
Some of the equations above only apply when the charges, currents, and �elds don t change with time.
Maxwell s equations also come in a more general form that drops this assumption. It is easy enough to
state the integral forms of these equations, but the di�erential forms require taking seriously the four-di-
mensional nature of our universe in space and time. In vector calculus, this is done by treating space and
time separately, but di�erential forms make sense in any number of dimensions; this ultimately simpli�es
Maxwell s equations. Finally, the constitutive relations in 4 dimensions clarify the nature of the geometry
of spacetime in our universe, which leads naturally to Albert Einstein s special theory of relativity.

Here are Maxwell s equations in integral form:
w

∂Q
B = 0,

w
∂R
E = − d

dt

w
R
B,

w
∂Q
D =

w
Q
Q,

w
∂R
H =

w
R
J +

d
dt

w
R
D.

In words, the magnetic �ux on the boundary of an oriented region of space is still zero, but the electric
potential along the boundary of an oriented surface is now the opposite of the rate of change with time of
the magnetic �ux on that surface. Similarly, the electric �ux out of the boundary of a region of space is
still the total electric charge in that region, but the magnetic potential around the boundary of a pseudo-
oriented surface is now the sum of the electric current through that surface and the rate of change with
time of the electric �ux through that surface. The continuity equation (which now relies on both Ampere s
Law and Gauss s Law) becomes

w
∂Q
J =

w
∂∂Q

H− d
dt

w
∂Q
D = − d

dt

w
Q
Q;

in words, if current �ows out of the boundary of a region of space, then the total charge in that region
goes down accordingly. (The reason that we credit these equations to Maxwell, when all of them are laws
discovered earlier by other people, is that Amp�ere didn t know about the contribution of D to his law;
Maxwell realized that it had to be there to get the correct continuity equation, and this is what made the
system complete.)

If we separate space from time, writing ds for the exterior di�erential on space (so holding time t con-
stant) and using a dot to indicate di�erentiation with respect to time, then here are the equations in dif-
ferential form:

dsB = 0,
dsE = −Ḃ,
dsD = Q,
dsH = J + Ḋ.

The continuity equation in di�erential form is

dsJ = −Q̇.

Rewriting in vector calculus (which is how you usually �nd Maxwell s equations on T-shirts):

∇ ·B = 0,

∇×E = −∂B
∂t

,

∇ ·D = ρ,

∇×H = J +
∂D
∂t

;
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the continuity equation is
∇ · J = −∂ρ

∂t
.

This is a little unsatisfying, because di�erential forms are supposed to take care of all variation of a
quantity, which in this context is variation in both space and time. In general, we have dω = dsω + ω̇ dt,
for ω any di�erential form de�ned on spacetime. Then d(ω dt) = dω dt = (dsω + ω̇ dt) = dsω dt + 0 =
dsω dt (since dtdt = 0 with the wedge product). This works for E , H, and J , since Ė , Ḣ, and J̇ never
appear. In fact, it works out very nicely to multiply Faraday s Law and Ampere s Law by dt. If we then
add or subtract these equations from the ones that precede them, then we can make dB and dD appear as
well. That is, the �rst pair adds as follows:

dsB + dsE dt = 0− Ḃ dt,
dsB + Ḃ dt + dsE dt = 0,

dB + d(E dt) = 0,
dF = 0.

In the last step, I ve introduced
F = B + E dt,

sometimes called the Faraday form (although the letter originally simply stood for `�eld'). Similarly, the
second pair subtracts as follows:

dsD − dsH dt = Q− J dt− Ḋ dt,
dsD + Ḋ dt− dsH dt = Q− J dt,

dD − d(H dt) = Q− J dt,
dM = j.

Now in the last step, I ve introduced both the Maxwell form

M = D −H dt

and the four-current form
j = Q− J dt.

Let s take stock of where we are. We have an oriented rank-2 di�erential form F , measured in webers
(which are the same as volt-seconds), a pseudo-oriented rank-2 di�erential form M , measured in coulombs
(which are the same as ampere-seconds), and a pseudo-oriented rank-3 di�erential form j, also measured
in coulombs. There are now only two Maxwell s equations:

dF = 0,
dM = j;

the continuity equation is simply
dj = 0.

We can also write these equations in integral form:
w

∂R
F = 0,

w
∂R

M = j;
w

∂Q
j = 0.
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Here, R is a 2-dimensional surface embedded in four-dimensional spacetime, which could be a surface as
we normally think of it, for an instant, but is typically what we would think of as a curve, persisting through
time (and perhaps moving, growing, or shrinking). Similarly, Q is a 3-dimensional hypersurface in space-
time, which could be a region of space for an instant but is typically what we would think of as a surface,
again persisting and possibly changing through time. There is no vector-calculus form of these spacetime
equations; neither F nor M can be described by vectors, even ones with 4 components (although there is a
concept of bivector that could be used here if you really insist).

It s worth looking speci�cally at the components that would go into F , M , and j. We have

F = B + E dt = B · d̄S + E · dr dt = B1 dy dz + B2 dz dx + B3 dxdy + E1 dx dt + E2 dy dt + E3 dz dt;

this has 6 coe�cients, containing all of the information in both E and B (so nothing is lost by combining
the two equations into one). Similarly,

M = D −H dt = D · d̄S−H · dr dt = D1 dy dz + D2 dz dx + D3 dx dy −H1 dx dt−H2 dy dt−H3 dz dt,

and
j = Q− J dt = ρ d̄V − J · d̄S dt = ρdxdy dz − J1 dy dz dt− J2 dz dxdt− J3 dxdy dt.

(The information in the four-current form can be put into a four-dimensional vector, but I won t bother,
since everything works already with forms.)

Page 7 of 7


