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All of the integrals in vector calculus can be thought of as integrals of di�erential forms of one sort or an-
other. Since integration of di�erential forms generalizes in ways that integration of vector �elds cannot
(some of which are important in applications, especially to physics), it s useful to be able to think about
di�erential forms. Furthermore, one then needs fewer formulas for the various derivatives of vector �elds
and for the theorems that relate derivatives to integrals.

General principles
Here I spell out the general principles of integrating di�erential forms, but it s really the examples that
follow that will make the ideas clear.

There are three sorts of di�erential forms that we ll need: oriented forms, pseudo-oriented forms, and
unoriented forms. The oriented forms are the most straightforward kind and the simplest to calculate
with. The pseudo-oriented forms are essentially the same as oriented forms, except that their sign is deter-
mined by using the right-hand rule; if we used the left-hand rule instead, then the pseudo-oriented forms
would have opposite sign but the results of all integrals would stay the same. (It is sometimes handy to
keep track of whether something is oriented or pseudo-oriented, but you can ignore the di�erence in cal-
culations as long as you always use the right-hand rule.) The unoriented forms are least used in applica-
tions; they typically arise by taking the absolute value of another form (and then possibly multiplying by
a scalar �eld). However, they are still important, since lengths, areas, and volumes may be found by inte-
grating unoriented forms.

We ll integrate these forms along various regions in space, called manifolds. These manifolds can al-
so be oriented, pseudo-oriented, or unoriented. Now it s the unoriented manifolds that are the simplest;
they are just shapes of consistent dimension. With an oriented manifold, we also make a choice of which
direction to go along the manifold; with a pseudo-oriented manifold, we instead make a choice of which di-
rection to go around or across the manifold. As you might guess, we integrate oriented forms on oriented
manifolds, pseudo-oriented forms on pseudo-oriented manifolds, and unoriented forms on unoriented mani-
folds.

To calculate integrals, we will parametrize our manifolds; we ll have one or more variables t, u, v, . . .
(the parameters), taking a bounded domain of values, and a function (the parametrization) specifying
which point in space corresponds to which values of the parameters. Running this function over the entire
domain of parameters carves out the manifold. (We ll want our parametrization functions to be continu-
ously di�erentiable, in order to avoid technicalities about whether the integrals are de�ned. Similarly, the
forms themselves should be continuous.)

The number of parameters used is the dimension of the manifold. This must match the rank of the
di�erential form, which is the number of di�erentials in each term of the form. These di�erentials are com-
bined using the wedge product , ∧. A key property of the wedge product is that it is anticommutative be-
tween di�erentials; that is,

dx ∧ dy = −dy ∧ dx

(much like the cross product of vectors). This also means that dx ∧ dx = 0. However, for unoriented forms,
we take the absolute value of the wedge product; then |dx ∧ dy| = |−dy ∧ dx| = |dy ∧ dx|, while |dx ∧ dx| =
|0| = 0 still.

To calculate the integral, you use the parametrization to express the coordinates x, y, . . . in terms of
the parameters t, u, v, . . ., then di�erentiate this to get dx,dy, . . . in terms of dt,du, dv, . . ., so that the
integral is entirely in terms of the parameters. We then express this as an iterated integral, making sure
that the (pseudo)-orientation (if any) matches (or else putting a minus sign out front if it doesn t).
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Curves
A curve C is a manifold of dimension 1. So it is given by a vector-valued function r = (x, y, . . .) of one
variable t (which we ll assume is continuously di�erentiable). When we orient a curve, we specify which
direction to travel along the curve; when we pseudo-orient a curve in 2 dimensions, we specify which direc-
tion to travel across the curve. (We won t need to pseudo-orient a curve in more dimensions.)

To integrate a vector �eld F = 〈M, N, . . .〉 along an oriented curve C, we integrate the rank-1 oriented
form F · dr:
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(There s no need to learn all of these formulas; just learn one, then put everything in terms of t and push
through.) To match orientations, make sure that the direction along the curve as t increases is the same
direction as the curve s orientation; otherwise put a minus sign out front.

To integrate a vector �eld F = 〈M, N〉 across a pseudo-oriented curve C in 2 dimensions, we integrate
the rank-1 pseudo-oriented form F× dr (where the cross product in 2 dimensions produces a scalar, or
rather a pseudo-scalar since the sign depends on the right-hand rule):
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To match pseudo-orientations using the right-hand rule, make sure that the direction along the curve as t
increases is counterclockwise from the direction of the curve s pseudo-orientation; otherwise put a minus
sign out front.

To integrate a scalar �eld f on an unoriented curve C, we integrate the rank-1 unoriented form f d̄s,
where s has no meaning by itself but instead d̄s is the unoriented form ‖dr‖:
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Now there is no orientation to match; instead, make sure that t increases, so that |dt| = dt in the integral.

Surfaces
A surface R is a manifold of dimension 2. So it is given by a vector-valued function r = (x, y, z, . . .) of
two variables u, v (which we ll assume is continuously di�erentiable). When we pseudo-orient a surface in
3 dimensions, we specify which direction to travel across the surface. (We won t need to pseudo-orient a
surface in more dimensions, nor will we orient any at all.)

To integrate a vector �eld F = 〈M, N, O〉 across a pseudo-oriented surface R in 3 dimensions, we in-
tegrate the rank-2 pseudo-oriented form F · d̄S, where S has no meaning by itself, but instead d̄S is the
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psuedo-vector-valued form 1/2 dr ×̂ dr (which as a vector is multiplied by the cross product and as a dif-
ferential form is multiplied by the wedge product). This works out to 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 (using
the right-hand rule) or ∂r/∂u× ∂r/∂v du ∧ dv:

w
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To match pseudo-orientations using the right-hand rule, make sure that, as you curl from the direction in
which u increases towards the direction in which v increases, the right-hand rule gives the direction of the
surface s pseudo-orientation; otherwise put a minus sign out front.

To integrate a scalar �eld f on an unoriented surface R, we integrate the rank-2 unoriented form
f d̄σ, where σ has no meaning by itself but instead d̄σ is the unoriented form ‖d̄S‖:
w
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Again there is no orientation to match; instead, make sure that u and v both increase, so that |du ∧ dv| =
dudv in the integral.

The Stokes Theorem
The (second) Fundamental Theorem of Calculus states that

w b

a
df = f |ba.

This works just as well when there are several independent variables as when there is just one. In this
case, we can also write df as ∇f · dr to get the theorem

w b

a
∇f · dr = f |ba.

Although this is now a theorem about integrating a gradient along a curve, in essence it is still just the
ftc, a theorem about integrating di�erentials.

This theorem generalizes to di�erential forms of higher rank, where it is called the Stokes Theorem:
w

M
d ∧ α =

w
∂M

α.
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Here, α is any oriented or pseudo-oriented di�erential form and M is any oriented or pseudo-oriented man-
ifold, so long as they have the same kind of orientation and the dimension of M is 1 more than the rank
of α. To do this properly, we need to know two things: how to take the di�erential of a di�erential form
(which is the d ∧ α in the Stokes Theorem), and how to take the endpoints of a manifold other than a
curve (which is the ∂M in the Stokes Theorem).

With endpoints, we re really dealing with the boundary of a manifold. The boundary of a curve ori-
ented from a to b consists of both {a} and {b}, the former negatively and the latter positively. If you think
of a point {a} as a manifold of dimension 0 and think of a scalar quantity f as a di�erential form of rank 0,
then we integrate f on {a} by simply taking the value of f at a:

r
{a}f = f |a. Then the FTC can be writ-

ten as w
C

df =
w

∂C
f ,

so the symbol `∂' indicates the boundary here. The boundary of a surface is a curve, and the boundary of
a region of space is a surface.

When we take the di�erential of a di�erential form α, we get another di�erential form if we take the
exterior di�erential d ∧ α (which is often written just `dα'). When we add forms, the exterior di�erential
obeys the Sum Rule as usual; when we multiply them, we have a kind of Product Rule too. This is the
same as the usual Product Rule, except that we must keep track of the order of multiplication. However,
this caveat really doesn t matter due to the next rule: the exterior di�erential of a di�erential is zero. For
example,

d ∧ (xdy ∧ dz) = dx ∧ dy ∧ dz + xd ∧ dy ∧ dz − xdy ∧ d ∧ dz = dx ∧ dy ∧ dz + 0 + 0 = dx ∧ dy ∧ dz.

So in the end, you just take the di�erential of the non-di�erential portion of each term, then stick this
with a wedge in front of the previous di�erential portion.

When we relate di�erential forms to vector �elds, we ll also use various ways of taking derivatives of
vector �elds. These can be expressed using ∇ and one of the ways of multiplying vectors: the divergence
∇ · F is a scalar �eld, and the curl ∇× F is a pseudo-vector �eld in 3 dimensions or a pseudo-scalar �eld
in 2 dimensions. Speci�cally,

∇ · F = 〈∂/∂x, ∂/∂y, . . .〉 · 〈M, N, . . .〉 =
∂M

∂x
+

∂N

∂y
+ · · · ;

and
∇× F = 〈∂/∂x, ∂/∂y, ∂/∂z〉 × 〈M,N,O〉 =

­
∂O

∂y
− ∂N

∂z
,
∂M

∂z
− ∂O

∂x
,
∂N

∂x
− ∂M

∂y

·
in 3 dimensions, while

∇× F = 〈∂/∂x, ∂/∂y〉 × 〈M,N〉 =
∂N

∂x
− ∂M

∂y

in 2 dimensions.
The connection between these and di�erentials is as follows:

• df = ∇f · dr in any number of dimensions;
• d ∧ (F · dr) = ∇× F d̄A in 2 dimensions;
• d ∧ (F · dr) = ∇× F · d̄S in 3 dimensions;
• d ∧ (F× dr) = ∇ · F d̄A in 2 dimensions; and
• d ∧ (F · d̄S) = ∇ · F d̄V in 3 dimensions.

(These are not new principles, but rather facts that you can verify by writing everything in terms of the
components of F, partial deriviatves, and di�erentials.) Here, d̄A is the trivially pseudo-oriented area form
dx dy (which is dx ∧ dy using the right-hand rule), and d̄V is the trivially pseudo-oriented volume form
dx dy dz (which is dx ∧ dy ∧ dz using the right-hand rule).

Now suppose that a surface R is bounded by a curve ∂R. The Stokes Theorem tells us that
w

R
d ∧ α =

w
∂R

α,
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where α is any (oriented or pseudo-oriented) di�erential form of rank 1. If I integrate a vector �eld F
along ∂R, then I m really integrating the di�erential form F · dr, so

w
∂R

F · dr =
w

R
d ∧ (F · dr) =

w
R
∇× F · d̄S

in 3 dimensions, or w
∂R

F · dr =
w

R
d ∧ (F · dr) =

w
R
∇× F d̄A

in 2 dimensions. These are the theorems traditionally called Stokes ′s Theorem and Green ′s Theorem, re-
spectively. If, in 2 dimensions, I integrate F across ∂R, then

w
∂R

F× dr =
w

R
d ∧ (F× dr) =

w
R
∇ · F d̄A

is another form of Green s Theorem; in terms of di�erentials, it s just like the previous version, except that
the form being integrated is pseudo-oriented instead of oriented. (These theorems are not new principles
either, but also facts that you can verify by explicit calculation.)

Next, suppose that a bounded region Q in space is bounded by a surface ∂Q. Now the Stokes Theo-
rem tells us that w

Q
d ∧ α =

w
∂Q

α,

where now α is any (oriented or pseudo-oriented) di�erential form of rank 2. If I integrate a vector �eld F
across ∂Q, then I m really integrating F · d̄S, so

w
∂Q

F · d̄S =
w

Q
d ∧ (F · d̄S) =

w
Q
∇ · F d̄V .

This is the theorem traditionally called Gauss ′s Theorem, although many textbooks simply call it the Di-
vergence Theorem. (Once more, you can verify these by explicit calculation.)

Since the boundary ∂M for any manifold is closed in on itself, ∂∂M , the boundary of the boundary, is
always empty. This means that

w
M

d ∧ d ∧ α =
w

∂M
d ∧ α =

w
∂∂M

α = 0;

since this is true no matter how small M may be, we can conclude that

d ∧ d ∧ α = 0

for any (oriented or pseudo-oriented) di�erential form α. In terms of vector �elds, this has two conse-
quences:

∇×∇f = 0

in 2 or 3 dimensions, and
∇ · ∇ × F = 0

in 3 dimensions. If you write these facts out using partial derivatives, then you ll see that they simply
state the equality of mixed partial deriviatives. (As a technicality, that equality is only guaranteed when
the mixed partial derivatives are continuous; we derived these facts by considering integrals that likewise
are only guaranteed to exist when the forms being integrated are continuous.)
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Hodge duals
You may notice that a vector �eld F can be turned into a di�erential form in two di�erent ways. In 2 di-
mensions, F · dr is an oriented form of rank 1, while F× dr is a pseudo-oriented form of rank 1. In 3 di-
mensions, F · dr is again an oriented form of rank 1, while now F · d̄S is a pseudo-oriented form of rank 2.
Either way, the two di�erential forms related to a single vector �eld are called Hodge duals of each other.
People who work directly with di�erential forms use the Hodge duals to bring in geometric ideas of length
and angle, without ever going through vector �elds. In this way, one can work as much as possible directly
with the objects that one integrates to get measurable quantities.

The Hodge dual of a di�erential form α is denoted ∗α. In rectangular coordinates, it s easy to calcu-
late Hodge duals; you change the di�erential part of each term to whatever is missing in the area or vol-
ume form, paying attention to the sign. This gives us

∗dx = dy, ∗dy = −dx

in 2 dimensions; and

∗dx = dy ∧ dz, ∗dy = −dx ∧ dz = dz ∧ dx, ∗dz = dx ∧ dy

and
∗(dy ∧ dz) = dx, ∗(dz ∧ dx) = dy, ∗(dx ∧ dy) = dz

in 3 dimensions. (The Hodge dual of an oriented form is pseudo-oriented and vice versa, and these rules
assume the right-hand rule.) Now you can check that

∗(F · dr) = F× dr, ∗(F× dr) = −F · dr,

in 2 dimensions; and
∗(F · dr) = F · d̄S, ∗(F · d̄S) = F · dr

in 3 dimensions. We can even extend this to forms of top rank and to scalar functions (which are di�eren-
tial forms of rank 0):

∗(d̄A) = ∗(dx ∧ dy) = 1, ∗1 = dx ∧ dy = d̄A

in 2 dimensions; and
∗(d̄V ) = ∗(dx ∧ dy ∧ dz) = 1, ∗1 = dx ∧ dy ∧ dz = d̄V

in 3 dimensions.
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