
Notes Math-2080-es31 2015 June 1

The wedge product of di�erential forms is kind of like the cross product of vectors; however, instead of
trying to interpret it as another vector (or a scalar), we view it as another di�erential form of higher `rank'
than the original forms. The ordinary di�erential forms that we re used to are rank 1, and they can be
evaluted at a point and a vector; to evaluate a di�erential form of rank 2, you need a point and 2 vectors.
If you keep going with more wedge products, then you get di�erential forms of even higher rank: to evalu-
ate a di�erential form of rank n, you need a point and n vectors.

The wedge product also involves subtracting one thing from another (again like the cross product); if
α and β are 1-forms (di�erential forms of rank 1, as we ve been using so far), P is a point, and v and w
are vectors, then

(α ∧ β)| R=P
dR=v,w

= α| R=P
dR=v

β| R=P
dR=w

− α| R=P
dR=w

β| R=P
dR=v

.

For example, if α = x2 dx+ xy dy, β = y2 dx− xy dy, P = (2, 3), v = ⟨0.01, 0.04⟩, and w = ⟨−0.01, 0⟩,
thenÄ
(x2 dx+ xy dy) ∧ (y2 dx− xy dx)

ä∣∣∣ (x,y)=(2,3)
d(x,y)=⟨0.01,0.04⟩,⟨−0.01,0⟩

= (x2 dx+ xy dy)| (x,y)=(2,3)
⟨dx,dy⟩=⟨0.01,0.04⟩

(y2 dx− xy dy)| (x,y)=(2,3)
⟨dx,dy⟩=⟨−0.01,0⟩

− (x2 dx+ xy dy)| (x,y)=(2,3)
⟨dx,dy⟩=⟨−0.01,0⟩

(y2 dx− xy dy)| (x,y)=(2,3)
⟨dx,dy⟩=⟨0.01,0.04⟩

=
Ä
(2)

2
(0.01) + (2)(3)(0.04)

äÄ
(3)

2
(−0.01)− (2)(3)(0)

ä
−
Ä
(2)

2
(−0.01) + (2)(3)(0)

äÄ
(3)

2
(0.01)− (2)(3)(0.04)

ä
= (0.28)(−0.09)− (−0.04)(−0.15) = −0.0312.

A few basic properties of the wedge product follow immediately (where α, β, γ are 1-forms and u is a
0-form, that is an ordinary non-di�erential quantity):

α ∧ (uβ) = (uα) ∧ β = u(α ∧ β);

(α+ β) ∧ γ = α ∧ γ + β ∧ γ;

α ∧ (β + γ) = α ∧ β + α ∧ γ;

α ∧ β = −β ∧ α;

α ∧ α = 0.

So if you treat the wedge product as a kind of multiplication, then you can use the ordinary rules of alge-
bra, so long as you keep track of the order of multiplication in the wedge product.

To de�ne a wedge product between forms of higher rank, you have to add and subtract all possible
permutations of the possible orders in which to write the vectors at which the result is evaluated. Keeping
track of all of this in a general formula is complicated, but the important point for our calculations is that
the rules above continue to apply, and additionally we have an associative law for wedge products:

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).

We will not actually need to evaluate these higher-rank forms in this course; what s necessary is to work
with them algebraically.

The basic example that shows how to do this is the transformation between rectangular and polar
coordinates. Given

x = r cos θ,

y = r sin θ,
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we di�erentiate to get

dx = cos θ dr − r sin θ dθ,

dy = sin θ dr + r cos θ dθ.

Given this, the algebra of the wedge product determines this calculation:

dx ∧ dy = (cos θ dr − r sin θ dθ) ∧ (sin θ dr + r cos θ dθ)

= (cos θ dr) ∧ (sin θ dr) + (cos θ dr) ∧ (r cos θ dθ) + (−r sin θ dθ) ∧ (sin θ dr) + (−r sin θ dθ) ∧ (r cos θ dθ)

= cos θ sin θ(dr ∧ dr) + r cos2 θ(dr ∧ dθ)− r sin2 θ(dθ ∧ dr)− r2 sin θ cos θ(dθ ∧ dθ)

= cos θ sin θ(0) + r cos2 θ(dr ∧ dθ)− r sin2 θ(−dr ∧ dθ)− r2 sin θ cos θ(0)

= 0 + r cos2 θ(dr ∧ dθ) + r sin2 θ(dr ∧ dθ) + 0

= r(cos2 θ + sin2 θ) dr ∧ dθ

= r dr ∧ dθ.

With experience, you can do this sort of thing much faster; for example, you can immediately recognize
the terms that will become zero and skip them.

This is an example of changing coordinates in two variables; we can also use two variables to parametrize
a surface in three-dimensional space. For example, on the surface of the unit sphere (the sphere of ra-
dius 1 centred at (x, y, z) = (0, 0, 0)), if we write x and y using r and θ above, then we can further write

r = 1 sinϕ,

z = 1 cosϕ,

where the 1 indicates the radius of the sphere and the angle ϕ varies from 0 to π. Di�erentiating,

dr = cosϕdϕ,

dz = − sinϕdϕ.

Thus,

dx ∧ dy = r dr ∧ dθ = sinϕ cosϕdϕ ∧ dθ,

dx ∧ dz = (cos θ cosϕ dϕ− sinϕ sin θ dθ) ∧ (− sinϕ dϕ) = 0 + sin2 ϕ sin θ dθ ∧ dϕ,

dy ∧ dz = (sin θ cosϕdϕ+ sinϕ cos θ dθ) ∧ (− sinϕ dϕ) = 0− sin2 ϕ cos θ dθ ∧ dϕ.

However,

dx ∧ dy ∧ dz = (sinϕ cosϕdϕ ∧ dθ) ∧ (− sinϕ dϕ) = sin2 ϕ cosϕ dϕ ∧ dϕ ∧ dθ = 0.

This makes sense if dx ∧ dy ∧ dz represents something like a volume, since the volume of the surface of a
sphere is zero.

To see how dx ∧ dy ∧ dz indeed represents something like a volume, I should explain how to integrate
higher-rank di�erential forms. You typically integrate a di�erntial form over a shape (or `manifold') whose
dimension (as given by the number of parameters used to parametrize the manifold) matches the rank of
the form. We have already seen this with rank-1 forms integrated over 1-dimensional curves, which can be
parametrize by 1 parameter t.

In general, to integrate a rank-p form over a manifold parametrized by p parameters, you divide the
manifold up into pieces along the level curves of the parameters, for each piece evaluate the di�erential
form at a point in that piece and at the vectors along the sides of the piece (evaluating du ∧ dv �rst at the
vector along the side where u increases and then at the vector along the side where v increases), multiply
by ±1 according to the orientation of the manifold, and then add these pieces up, taking the limit as the
size of the largest piece goes to zero.
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Here the orientation of the manifold indicates directions along it. In the case of a curve, there are
two ways to go along the curve, giving two orientations. In the case of a surface, if we start going in some
direction, then we can turn from that direction in one way or the other. In general, every small piece of a
manifold has two orientations, no matter what the dimension. A form such as du ∧ dv matches the orien-
tation if moving in the direction in which u increases and then turning in the direction in which v increas-
es matches the turning given by the orientation; if not, then we must use −1 for that piece.

In practice, we don t evaluate an integral as a limit of such sums; instead, we evaluate it as an inte-
grated integral in the parameters. To do this, we simply set up limits of integration over the values that
the parameters can take and write down an iterated integral that makes sense, inserting a factor of −1 if
the orientation of the di�erential form is opposite that of the manifold. For example, to integrate dx ∧
dy = sinϕ cosϕdϕ ∧ dθ on the top half of the unit sphere, oriented to turn clockwise when viewed from
outside the sphere, we start with

w 2π

θ=0

Åw π/2

ϕ=0
sinϕ cosϕ dϕ

ã
dθ =

w 2π

θ=0

1

2
dθ = π;

but then, because we turn counterclockwise to move from a direction in which ϕ increases to a direction in
which θ increases, the actual value is −π.

In the textbook, you ll never be given directly di�erential forms to integrate. In Section 15.6, you in-
tegrate vector �elds through surfaces; to integrate the vector �eld F, you integrate the di�erential form
F(x, y, z) · d̄S, where

d̄S =
1

2
dr×̂dr = ⟨dy ∧ dz, dz ∧ dx,dx ∧ dy⟩ = ∂r

∂u
× ∂r

∂v
du ∧ dv

(where r = ⟨x, y⟩z as usual). This requires the use of the right-hand rule for the cross product; we ac-
cordingly use the right-hand rule to convert between a direction through the surface (which is technical-
ly called a pseudo-orientation) and an orientation on the surface. So for example, to integrate the vector
�eld F(x, y, z) = ⟨0⟩01 = k downwards through the top half of the unit sphere is the same as integrating
dx ∧ dy on that hemisphere oriented clockwise (which I calculated above to be −π).

In Section 15.5, you integrate scalar �elds through surfaces; to integrate the scalar �eld f , you inte-
grate the di�erential form f(x, y, z) d̄σ, where

d̄σ = |d̄S| =
»
(dy ∧ dz)

2
+ (dz ∧ dx)

2
+ (dx ∧ dy)

2
=

∣∣∣∣ ∂r∂u × ∂r

∂v

∣∣∣∣ |du ∧ dv|.

Now orientation is irrelevant, instead, simply make sure that all parameters are increasing in the iterated
integral.

As for Chapter 14, here we are simply integrating scalar �elds on the �at surface of the plane, using

d̄A = |dx ∧ dy|

and on all of three-dimensional space, using

d̄V = |dx ∧ dy ∧ dz|.

So for example, in polar coordinates,

d̄A = |dx ∧ dy| = |r dr ∧ dθ| = |r| |dr ∧ dθ| = r |dr ∧ dθ|,

where the last step is valid if we only use non-negative values of r.
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