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Welome to multivariable Calulus! Here are my supplemental notes for this ourse, giving alternative

ways to think about some things, pratial advie, and sometimes more theoretial detail.

This does not over everything that you need to know; you should also have the o�ial ourse text-

book, whih is the 4th Edition of University Calulus: Early Transendentals by Hass et al published by

Addison�Wesley (Pearson). There are also some referenes in these notes to that textbook. Conversely,

there is some material in here that you don

′
t need to know, although I hope that it will be helpful; I ll

generally make a note of that when it happens.
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1 Vetor algebra

The �rst part of this ourse involves working with points and vetors in multidimensional spae. There are

not really any new ideas of Calulus itself here, but the setting may be new.

1.1 Points

In this lass, we look at spaes with up to 3 dimensions, but most of the ideas in this ourse ontinue to

make sense in spaes with any whole number of dimensions. Although spaes with more than 3 dimen-

sions are di�ult to visualize, sine we re used to living in a 3-dimensional spae, they make perfet sense

mathematially. Furthermore, whenever you re trying to keep trak of 4 or more independent quantities at

one, then you need the mathematis of a spae with 4 or more dimensions, whether or not you hoose to

visualize that spae geometrially.

If we assign retangular oordinates to a spae of n dimensions, then the result is alled Rn
(or R

n
);

in partiular, a oordinate spae of 1 dimension is R1
or simply R, whih is the set of real numbers, or

(thinking geometrially) the real number line. You an all the oordinates whatever you like, but it s

most ommon to use x (or sometimes t) as the oordinate in R; then to use x and y as the oordinates in

R2
; then x, y, and z in R3

; and �nally x1, x2, . . . , and xn in Rn
generally. But there are other systems;

as long as you list n independent variables in a row, then you have a valid list of oordinates for Rn
.

A point in Rn
may be denoted by listing the values of its oordinates in order, separated by ommas

and optionally surrounded by grouping parentheses. Thus, (x) or (more ommonly) x gives a point in the

real line R, while (x, y) gives a point in the oordinate plane R2
, (x, y, z) gives a point in the oordinate

spae R3
, and (x1, x2, . . . , xn) gives a point in Rn

(whih is the most general ase).

Sometimes it s nie to have a way to refer to a point in any number of dimensions without having to

write a long list with dots in it; then I usually write P for the point. Thus, in 1 dimension, P = x; in 2 di-

mensions, P = (x, y); in 3 dimensions, P = (x, y, z); and in n dimensions, P = (x1, x2, . . . , xn). So for ex-

ample, if I say that P = (2, 3, 5), then this is the same as saying that x = 2, y = 3, and z = 5.
It s traditional to use upperase letters to name points, as I just did. Another tradition is to leave

out the equality sign when naming points; so instead of writing P = (2, 3, 5) as I did above, people often

just write P (2, 3, 5). I think that this is a terrible onvention, so I won t follow it, but you will see it some-

times, even in the textbook.

1.2 Vetors

A vetor is a movement between points. For example, to move in the plane from the point (2, 3) to the

point (3, 1), you move 1 unit to the right (in the positive x diretion) and 2 units downwards (in the nega-

tive y diretion). This movement (1 unit to the right and 2 units downwards) is a vetor.

A vetor in Rn
has the same amount of information as a point there: n real numbers. For this reason,

people sometimes write a vetor using the same notation as they use to write a point. For example, the

vetor from the previous paragraph ould be written as (1,−2), the same notation as used for the point

(1,−2). When referring to a vetor, (1,−2) means a movement 1 unit to the right and 2 units downards;

when referring to a point, (1,−2) means the point that lies 1 unit to the right and 2 units downwards from

the origin.

However, a vetor is not the same thing as a point, and so people often use di�erent notation instead.

Common notations for the vetor that I ve been talking about inlude [1,−2],
î

1
−2

ó
, and 〈1,−2〉. I will use

the last of these, sine that is used in the textbook. (There is another notation, whih the book uses even

more often than 〈1,−2〉, and that is i− 2j. However, I ll save that for Setion 1.4, starting on page 6 be-

low.) The terminology for these numbers is also di�erent; while 1 and −2 are the oordinates of the point

(1,−2), we say that 1 and −2 are the omponents of the vetor 〈1,−2〉.
Whereas a point tells you a loation, a vetor tells you only about the motion and nothing about the

loation. So the vetor from (2, 3) to (3, 1) is the same vetor as, say, the vetor from (−2, 7) to (−1, 5).
In both ases, the motion is 1 unit to the right and 2 units downwards, so the vetor is 〈1,−2〉.
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Motion on a number line orresponds arithmetially to addition. For example, if you start at the

number 2 on a number line and move 4 units to the right, then you end up at the number 6, and we rep-

resent this fat in arithmeti as 2 + 4 = 6. Similarly, if you start at (2, 3) and move aording to the ve-

tor 〈1,−2〉, then you end up at (3, 1), and we represent this fat in arithmeti as (2, 3) + 〈1,−2〉 = (3, 1).
So you an add a point and a vetor to get another point. Or from another perspetive, we ould write

6− 2 = 4, and similarly (3, 1)− (2, 3) = 〈1,−2〉. So one way to desribe a vetor is to say that it s what

you get when you subtrat two points. The textbook doesn t talk about arithmeti with points and ve-

tors like this; it does talk about alulating the vetor from one point to another or alulating the point

reahed from another point by following a given vetor, but it doesn t refer to these operations as subtra-

tion and addition. Nonetheless, that s exatly what they are.

The rules for these alulations are very straightforward: you add or subtrat orresponding oordi-

nates and omponents. That is, to get the �rst oordinate of the sum, you add the �rst oordinate of the

original point and the �rst omponent of the vetor, and similarly for the seond oordinate; or when you

subtrat two points, you subtrat the �rst oordinates of the two points to get the �rst omponent of the

di�erene, and similarly for the seond omponent. So you an write out the alulations in full thus:

(2, 3) + 〈1,−2〉 = (2 + 1, 3− 2) = (3, 1);

(3, 1)− (2, 3) = 〈3− 2, 1− 3〉 = 〈1,−2〉.

Here are general formulas for this rule in any number of dimensions:

(a1, a2, . . . , an) + 〈v1, v2, . . . , vn〉 = (a1 + v1, a2 + v2, . . . , an + vn);

(b1, b2, . . . , bn)− (a1, a2, . . . , an) = 〈b1 − a1, b2 − a2, . . . , bn − an〉.

When I use P to denote a generi point, I ll use ∆P to denote a generi vetor. Here, the upperase

Greek letter Delta, `∆', whih stands for `di�erene', is ommonly used to indiate the amount by whih

the value of some quantity hanges. (Think of ∆y/∆x for the slope of a line.) That is,

∆P = P1 − P0,

or

∆P = 〈∆x1,∆x2, . . . ,∆xn〉.

When people want a symbol for the vetor from P to Q but don t want to refer to subtration of points,

then they ll sometimes write

−−→
PQ for Q− P , but I won t do that.

When you give a vetor a name of its own, however, it s ommon to use a boldfae lowerase letter,

suh as u or v. Thus, if I use v to refer to the vetor that I ve been using as an example throughout this

setion, then I would write v = 〈1,−2〉. In handwriting, you an write a little arrow over the letter in-

stead, to produe something like ~v; other ommon onventions are to underline or overline vetors, produ-

ing symbols suh as v or v. On the other hand, it s OK to just write v if you want. The meaning of any

symbol that you use should be lear from the ontext that you provide; in partiular, the ontext should

make lear whether a symbol refers to a number, funtion, point, vetor, or whatever, regardless of what-

ever fany fonts or deorations you may or may not use.

1.3 Arithmeti with vetors

Besides adding vetors to points and subtrating points to get a vetor, you an also do arithmeti within

the world of vetors itself. If u and v are vetors in n dimensions, both representing some motion with-

in Rn
, then u+ v represents the motion of u followed by the motion of v. This is onsistent with how

addition of motions works on a number line; for example, if you move 4 units to the right and then move

3 units to the right, then overall you re moving 4 + 3 = 7 units to the right.

If v is a vetor, then −v is the vetor representing the opposite motion. Again, this mathes arith-

meti on a number line; the opposite of moving 4 units to the right is moving 4 units to the left, whih is

represented by the number −4. Then u− v just means u+ (−v).
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You alulate these by the same priniples as arithmeti between points and vetors. For example, to

add 〈1,−2〉 and 〈3, 5〉, you simply add the orresponding omponents:

〈1,−2〉+ 〈3, 5〉 = 〈1 + 3,−2 + 5〉 = 〈4, 3〉.

And this should make sense; if you move 1 unit to the right and 2 units downwards, then move 3 units to

the right and 5 units upwards, then overall you re moving 4 units to the right and 3 units upwards. Simi-

larly,

〈1,−2〉 − 〈3, 5〉 = 〈1− 3,−2− 5〉 = 〈−2,−7〉.

That is, if you move 1 unit to the right and 2 units downards and then move the opposite of 3 units to the

right and 5 units upwards (whih is 3 units to the left and 5 units downwards), then overall you re moving

2 units to the left and 7 units downwards. Here are the general formulas in Rn
:

〈u1, u2, . . . , un〉+ 〈v1, v2, . . . , vn〉 = 〈u1 + v1, u2 + v2, . . . , un + vn〉;
〈u1, u2, . . . , un〉 − 〈v1, v2, . . . , vn〉 = 〈u1 − v1, u2 − v2, . . . , un − vn〉.

Besides adding and subtrating vetors, you an multiply or divide them by real numbers. For exam-

ple, if v is a vetor representing some motion, then 2v represents doing that motion twie, 1/2v or v/2
represents performing half of that motion, −2v represents making the opposite motion twie, and so on.

You alulate these by multiplying eah omponent by that same real number; for example,

2〈1,−2〉 = 〈2(1), 2(−2)〉 = 〈2,−4〉,
1

2
〈1,−2〉 =

≠
1

2
(1),

1

2
(−2)

∑
=

≠
1

2
,−1

∑
or

〈1,−2〉
2

=

≠
1

2
,
−2

2

∑
=

≠
1

2
,−1

∑
, and

−2〈1,−2〉 = 〈−2(1),−2(−2)〉 = 〈−2, 4〉.

Here are the general formulas in Rn
:

a〈v1, v2, . . . , vn〉 = 〈av1, av2, . . . , avn〉;
〈v1, v2, . . . , vn〉

a
=

≠
v1
a
,
v2
a
, . . . ,

vn
a

∑
for a 6= 0.

This operation is alled salar multipliation (or salar division in the ase of v/a), beause geometri-

ally it amounts to hanging the sale used to measure the vetor (at least when the real number in ques-

tion is positive). As a result of this, numbers are often alled salars when working with vetors, even

though the word `number' would work perfetly well.

More generally, you an take any homogeneous linear expression (that is a linear expression without

a onstant term) in any number of variables, replae the variables with vetors, and get a legitimate oper-

ation on vetors. Suh an operation is alled, in general, a linear ombination. For example, 2u+ 3v−
5w is a linear ombination of the vetors u, v, and w. Geometrially, this represents moving twie aord-

ing to u, then moving 3 times aording to v, and moving 5 times the reverse of the motion given by w.

Still more generally, you an replae the variables with points or vetors; if the sum of the oe�ients

on the points is 0, then the result is a vetor, and if the sum of the oe�ients on the points is 1, then the

result is a point. For example, if A, B, and C are points, while u and v are vetors, then 2A− 3B + 2C +
4u− 5v is a point (beause 2− 3 + 2 = 1), while 2A− 3B + C + 4u− 5v is a vetor (beause 2− 3 + 1 =
0). Geometrially, 2A− 3B + 2C + 4u− 5v means the point that you reah by starting at A, moving as

you would move to get to A from B, then moving twie as you would move to get to C from B, then mov-

ing 4 times aording to u, and moving 5 times the reverse of the motion given by v. (That is, think of

it as A+ (A−B) + 2(C −B) + 4u− 5v.) Similarly, 2A− 3B + C + 4u− 5v is the motion onsisting of

moving twie as you would move to get to A from B, then moving as you would move to get to C from B,
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then moving 4 times aording to u, and moving 5 times the reverse of the motion given by v. (That is,

think of it as 2(A−B) + (C −B) + 4u− 5v.)
Another example of a point is 1/3A+ 1/3B + 1/3C, whih is the average of the 3 points. If you

think of this as A+ 2/3 (B −A) + 1/3 (C −B), then you an desribe this in terms similar to those of the

previous examples, but in this ase it s probably better to think of it diretly as an average.

If the sum of the oe�ients on the points is neither 1 nor 0, then there is no diret geometri inter-

pretation of the linear ombination, but you an still perform alulations with suh things; they basial-

ly represent internal parts of a larger alulation, suh as the 2A− 3B that begins some of the examples

above.

All of the usual algebrai identities apply to linear ombinations of points and vetors. For example,

u+ v = v + u, (A+ u) + v = A+ (u+ v), 2(u+ v) = 2u+ 2v, and so on. Although you an prove these

geometrially, the simplest way to verify them is to do so omponent by omponent; then they redue to

identities about real numbers.

You ould try multiplying and dividing vetors by eah other using the same method of alulation as

you use for adding and subtrating them, omponent by omponent. People do this sometimes, but there s

no geometri interpretation of these operations, neither diretly nor as part of a larger alulation with a

geometri interpretation. So we won t be doing that. Instead, we ll see some other methods of multiplying

vetors later on, in Setions 1.6�12, on pages 9�17.

The zero vetor, denoted 0, represents no motion at all. Its general formula in Rn
is

0 = 〈0, 0, . . . , 0〉.

It obeys algebrai rules analogous to those obeyed by the real number 0, suh as 0+ v = v, v − v = 0,

and A+ 0 = A. (The last of these demonstrates what it means to say that 0 represents no motion at all;

you start at the point A, do nothing, and wind up still at A.)

1.4 The standard basis vetors

There are some other speial symbols for speial vetors, and these lead to another general system of nota-

tion for vetors (and points).

In R2
, there are 2 standard basis vetors, i and j:

i = 〈1, 0〉, j = 〈0, 1〉.

In R3
, there are 3 of them:

i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, k = 〈0, 0, 1〉.

In Rn
, there is a shift in the usual notation:

e1 = 〈1, 0, 0, . . . , 0〉, e2 = 〈0, 1, 0, 0, . . . , 0〉, . . . , en = 〈0, 0, . . . , 0, 0, 1〉.

The value of this is that any vetor an be written as a unique linear ombination of the standard basis

vetors:

〈a, b〉 = ai+ bj;

〈a, b, c〉 = ai+ bj+ ck;

〈a1, a2, . . . , an〉 = a1e1 + a2e2 + · · ·+ anen.

Work out the right-hand sides of these and see for yourself that you get the left-hand side. (It s a little

annoying that i and j are ambiguous, but as long as you know whether they re supposed to be in R2
or

in R3
, then you know what they mean.)

If a omponent of a vetor happens to be 1, then you an leave it out of the expression in the stan-

dard basis vetors; if the omponent is negative, then you use subtration instead of addition; if the om-

ponent is 0, then you leave that term out entirely. For example, 〈1,−2〉 = 1i+ (−2)j = i− 2j. In R3
,

〈1,−2, 0〉 is also written i− 2j, beause the omponent on k is 0.
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You an now do arithmeti with vetors by following the ordinary rules of algebra and leaving the

symbols for the standard basis vetors alone. For example, instead of 〈1,−2〉+ 〈3, 5〉 = 〈4, 3〉, you alu-

late

(i− 2j) + (3i+ 5j) = (1 + 3)i+ (−2 + 5)j = 4i+ 3j.

Similarly, instead of 2〈1,−2〉 = 〈2,−4〉, you alulate

2(i− 2j) = 2i− 2(2j) = 2i− 4j.

You an even extend this notation to points by introduing O for the origin of the oordinate system.

That is,

O = (0, 0, . . . , 0)

in Rn
. Then any point an be desribed by starting at the origin and moving along a vetor whose om-

ponents are the oordinates of that point; for example, (2, 3) = O + 〈2, 3〉 = O+ 2i+ 3j. Then you an

again do alulations using the rules of algebra; for example, instead of (2, 3) + 〈1,−2〉 = (3, 1), you alu-

late

(O + 2i+ 3j) + (i− 2j) = O + (2 + 1)i+ (3− 2)j = O+ 3i+ j.

The textbook uses this notation for vetors most of the time, although it ontinues to use a list of o-

ordinates with ommas for points, whih it has to do sine it never refers diretly to addition of points and

vetors.

1.5 Lengths and angles

In many situations, we want to refer to the distane between two points, or equivalently to the length of a

vetor. This goes by several names; in general, the length, magnitude, or norm of a vetor in Rn
is

‖〈v1, v2, . . . , vn〉‖ =
√
v12 + v22 + · · ·+ vn2

.

(Here I ve denoted the length of a vetor v as ‖v‖, although the textbook writes this as simply |v| in-
stead.) As a statement about distanes, this is the n-dimensional generalization of the Pythagorean Theo-

rem.

One basi algebrai property of lengths is

‖av‖ = |a| ‖v‖.

(Note that you must write |a| when a is a salar, even if you hoose to use the notation ‖v‖ when v is a

vetor.) You an hek this from the general formula by fatoring inside the square root; remember the

identity

√
a2 = |a| for arbitrary real numbers. (It s a ommon algebra mistake to think that

√
a2 = a; this

is orret when a ≥ 0 but not otherwise.) In partiular,

‖−v‖ = ‖v‖.

Also,

‖0‖ = 0;

onversely, if ‖v‖ = 0, then it must be that v = 0. (Ultimately this is beause a sum of squares of real

numbers an only be zero if all of the original numbers are zero.)

There is no general formula for ‖u+ v‖; however, we an say

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

This is alled the triangle inequality, sine if you draw a triangle whose sides are u, v, and their sum

u+ v, then this expresses the fat that the length of the last side is the shortest distane between its two

endpoints. (You an hek this from the formula by squaring both sides, anelling some ommon terms,
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squaring again, subtrating the two sides, and fatoring the result as a perfet square. You an then ar-

gue that this perfet square is greater than or equal to zero, so the right-hand side just before the subtra-

tion is greater than or equal to the left-hand side at that stage, and this remains so upon taking prinipal

square roots, adding some ommon terms, and taking prinipal square roots again. I ll skip the details.)

If v 6= 0 (so that you an divide by ‖v‖), then v/‖v‖ is a vetor whose own magnitude is 1. (This is
beause ∥∥∥∥

v

‖v‖

∥∥∥∥ =
‖v‖
|‖v‖| =

‖v‖
‖v‖ = 1,

using that ‖v‖ ≥ 0.) This is alled the unit vetor in the diretion of v, or simply the diretion of v.

The usual notation for this is v̂:

v̂ =
v

‖v‖ .

For some reason, the textbook never introdues this notation (or any other notation for this onept), but

it refers to the idea itself quite often. Notie that you an write v = ‖v‖v̂; this expresses the ommon slo-

gan that a vetor has both a length and a diretion. (However, the zero vetor has only a length, of 0, and
no way to pik out any unit vetor as its diretion.)

If you perform some algebrai triks with the triangle inequality and assume that neither u nor v is

the zero vetor 0 (so that you an divide by their norms), then you an also derive the ompound inequali-

ty

−1 ≤ ‖u‖2 + ‖v‖2 − ‖u− v‖2
2 ‖u‖ ‖v‖ ≤ 1.

(I ll skip this derivation too, but it s based on �rst replaing v with −v, squaring both sides, and rearrang-

ing terms to derive one half of this result, then going bak to the beginning and replaing u with u− v,

squaring both sides again, and rearranging terms to derive the other half of the result.) If you draw a tri-

angle whose sides are u, v, and u− v (so that u and v are both starting from the same point), then the

Law of Cosines says that the expression in the middle of the ompound inequality above is the osine of

the angle between the sides u and v, and the inequality veri�es that this lies within the possible range of

values for a osine. (If either u or v is the zero vetor, then you don t really have a triangle, and this an-

gle doesn t make sense.)

If you have two rays emanating from the same point in a multidimensional spae, then the only way

to desribe the angle between them is with an angle between 0 and π (or 180◦), whih is the range of pos-

sible values of an arosine (or inverse osine), so taking the arosine of the expression above gives you

this angle:

∠(u,v) = acos

Ç
‖u‖2 + ‖v‖2 − ‖u− v‖2

2 ‖u‖ ‖v‖

å
.

(In R2
, and only in R2

, it s possible to distinguish lokwise and ounterlokwise angles, whih I ll ome

bak to when I disuss the salar ross produt in Setion 1.11 on page 15.) Thus, it s possible to desribe

both lengths and angles using vetors, through the onept of the magnitude of a vetor. (There s a more

e�ient way to alulate this osine, whih we ll see on page 11 at the end of Setion 1.7, using the dot

produt, but it s nie to know that angles an be alulated from lengths alone.)

Two vetors u and v are perpendiular or orthogonal if the angle between them is a right angle

(π/2, or 90◦), whose osine is 0; the symbol for this is u ⊥ v. In terms of lengths, u and v are perpen-

diular when ‖u− v‖2 = ‖u‖2 + ‖v‖2 (or replaing v with −v, whih would also be perpendiular to u,

‖u+ v‖2 = ‖u‖2 + ‖v‖2). Similarly, u and v are parallel if the angle between them is the zero angle

(0, or 0◦), whose osine is 1; the symbol for this is u ‖ v. However, people sometimes use this symbol (or

even the word `parallel') to inlude the ase where u and v are antiparallel, meaning that the angle be-

tween them is a straight angle (π, or 180◦), whose osine is −1. In terms of lengths, u and v are parallel if

‖u− v‖2 =
(
‖u‖ − ‖v‖

)2
(so ‖u− v‖ =

∣∣‖u‖ − ‖v‖
∣∣
, or ‖u+ v‖ = ‖u‖+ ‖v‖), and u and v are antipar-

allel if ‖u− v‖2 = (‖u‖+ ‖v‖)2 (so ‖u− v‖ = ‖u‖+ ‖v‖, or ‖u+ v‖ =
∣∣‖u‖ − ‖v‖

∣∣
).
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However, for many appliations of vetors, the onept of length or magnitude really doesn t make

sense! This is beause vetors desribe motion within any spae with any oordinates, and those oordi-

nates might refer to inompatible quantities. For example, if x measures time and y measures something

that hanges with time but is not itself a time (the height of a falling objet, the prie of a stok, the pop-

ulation of the world, or nearly any other quantity of interest), then it really doesn t make sense to talk

about the magnitude

‖∆P‖ = ‖〈∆x,∆y〉‖ =
√
∆x2 +∆y2.

You an see this if you imagine what units of measurement you might use for suh a magnitude; if x is

measured in seonds and y is measured in metres (as one might do when talking about the height of a

falling objet, for example), then whih unit is ‖∆P‖ in? Neither one makes sense, nor does any ombi-

nation of them.

So while lengths of vetors and angles between them always exist in the realm of mathematial ab-

stration, they an only be meaningful when all of the oordinates measure the same type of quantity.

(Even then, these onepts may or may not really be meaningful, but at least they have a hane.) The

exeption to this is that we an say whether two nonzero vetors are parallel (or antiparallel) without ref-

erene to angles: u and v are parallel if there is a salar k > 0 suh that u = kv; they re antiparallel if
there is a salar k < 0 suh that u = kv.

1.6 Projetions

If you have two vetors u and v, and assuming that neither of them is 0, plae them so that they both

start at the same point A and then draw a line from A+ v to the line through A and A+ u so that these

lines interset at a right angle. Let B be the point where these lines interset; the vetor B −A is the

projetion of v onto u, denoted proj
u
v. Sometimes people also onsider the projetion of v perpendi-

ular to u; this is the vetor from B to A+ v:

proj⊥
u
v = v − proj

u
v.

(In general, the symbol `⊥' is used when talking about perpendiular things, whih the shape of the sym-

bol is supposed to remind you of.)

A related onept is the omponent of v in the diretion of u, denoted comp
u
v; this is a salar ho-

sen so that

proj
u
v = comp

u
v û.

It s a ommon mistake to think that proj
u
v has the same diretion as u, so that onsequently comp

u
v =

‖proj
u
v‖. But in fat, proj

u
v an just as easily have the opposite diretion, so the general rule is

|comp
u
v| = ‖proj

u
v‖.

The omponent of v in the diretion of u is positive if u and v have roughly the same diretion but nega-

tive if they have roughly opposite diretions. (It s also possible that this omponent is zero, when u and v

are perpendiular.)

I have not allowed v to be the zero vetor, beause then A+ v is simply A, right on the line through A
and A+ u, so it makes no sense to draw anything from that point perpendiular to that line. However,

sine we re already on the line, we an simply take B to be A as well, so that proj
u
v, whih is B −A, is

also 0. Thus, we have these results:

proj
u
0 = 0, proj⊥

u
0 = 0, comp

u
0 = 0.

Now proj
u
v and comp

u
v exist no matter what v is (although it s still neessary that u 6= 0). One we

have that, you an verify these fats by drawing the relevant pitures:

proj
u
(v +w) = proj

u
v + proj

u
w, so comp

u
(v +w) = comp

u
v + comp

u
w;

proj
u
(av) = a proj

u
v, so comp

u
(av) = a comp

u
v.
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This is all well and good, but if you know a little trigonometry, then you an get a nie formula for

this omponent. This is beause v forms the hypotenuse of a right triangle, one of whose legs is proj
u
v,

and whose angle next to that leg is ∠(u,v) if u and v have roughly the same diretion or π − ∠(u,v) if
they have roughly opposite diretions. In the �rst ase,

cos∠(u,v) =
‖proj

u
v‖

‖v‖ =
comp

u
v

‖v‖ ;

in the other ase,

cos∠(u,v) = − cos
(
π − ∠(u,v)

)
= −‖proj

u
v‖

‖v‖ = −− comp
u
v

‖v‖ =
comp

u
v

‖v‖ .

In the middle, when u and v are perpendiular, then cos∠(u,v) and comp
u
v are both 0. So in any ase,

comp
u
v = ‖v‖ cos∠(u,v)

as long as v 6= 0. (If v = 0, then the angle ∠(u,v) doesn t make sense, but the equation is still true in

a way, sine it beomes the true statement 0 = 0 no matter what value you use for the angle.) We saw

on page 8 how to express this osine using only ‖u‖, ‖v‖, and ‖u− v‖, but for now, let s just leave it as
cos∠(u,v).

1.7 The dot produt

To treat u and v equally, the disussion of projetions and omponents above suggests that we ll get an

interesting operation if we de�ne

u · v = ‖u‖ comp
u
v = ‖u‖ ‖v‖ cos∠(u,v).

This indeed has many nie properties; for example, these follow from the orresponding properties for

omponents:

u · (v +w) = (u · v) + (u ·w),

u · (av) = a(u · v).

However, sine u and v appear symmetrially in the formula with the osine, we have

u · v = v · u,

and then these properties also follow:

(u+ v) ·w = (u ·w) + (v ·w),

(au) · v = a(u · v).

The de�nition ‖u‖ comp
u
v allows v to be 0, but not u. However, sine the operation is symmet-

ri when the vetors are nonzero, we an de�ne it so that it ontinues to be symmetri, so that 0 · v = 0
as well as v · 0 = 0. In partiular, we de�ne 0 · 0 to be 0. (Thus, it remains true in a way that u · v =
‖u‖ ‖v‖ cos∠(u,v), even when ∠(u,v) doesn t make sense, beause in that ase the equation beomes

0 = 0 no matter what value you use for the angle.) Then the properties listed above ontinue to be true.

By this point, you should see where the notation omes from; this operation has a lot of the same

properties as multipliation. It s variously alled inner multipliation (for the operation) or the inner

produt (for the result of the operation), the salar produt (beause the result is a salar), or (naming

it after its notation) the dot produt. (Don t onfuse salar multipliation, desribing the operation for

av, with the salar produt, desribing the result of the operation u · v.) The properties above state that

the dot produt distributes over addition, that it s ommutative, assoiative with salar multipliation, et.
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Sine angles an be expressed in terms of lengths, so an the dot produt; you get

u · v =
‖u‖2 + ‖v‖2 − ‖u− v‖2

2
,

an expression that works regardless of whether u and v are nonzero. An important speial ase is when u

and v are the same vetor; then this simpli�es to

v · v = ‖v‖2.

(Another way to see this is that the angle between a vetor and itself is 0, the osine of whih is 1, so

v · v = ‖v‖ ‖v‖ cos 0 = ‖v‖2.)
However, as a pratial matter, there is a better way to alulate this. Beause the dot produt dis-

tributes over addition and assoiates with salar multipliation, we only need to know i · i, i · j, and so on;

that is, we only need to know what it does to the standard basis vetors. Sine these vetors are all per-

pendiular to one another, so the osine between any two di�erent ones is 0, these dot produts are almost

all 0. The exeption is the dot produt of one of these with itself; sine these vetors all have a magnitude

of 1, the dot produt of any one with itself is 12 = 1. So in 2 dimensions,

〈a, b〉 · 〈c, d〉 = (ai+ bj) · (ci+ dj) = ac i · i+ ad i · j+ bc j · i+ bd j · j = ac 1 + ad 0 + bc 0 + bd 1 = ac+ bd;

in 3 dimensions,

〈a, b, c〉 · 〈d, e, f〉 = ad+ be+ cf

by a similar alulation, and most generally in n dimensions,

〈a1, a2, . . . , an〉 · 〈b1, b2, . . . , bn〉 = a1b1 + a2b2 + · · ·+ anbn.

That is, you multiply orresponding omponents of the vetors and add these all up. For example,

〈1,−2〉 · 〈3, 5〉 = (1)(3) + (−2)(5) = 3− 10 = −7.

Now its best to give formulas for angles, projetions, and omponents in terms of the dot produt,

rather than the other way around. So:

comp
u
v =

u · v
‖u‖ ;

proj
u
v = comp

u
v û =

u · v
‖u‖2

u =
u · v
u · uu;

proj⊥
u
v = v − proj⊥

u
v = v − u · v

u · uu =
(u · u)v − (u · v)u

u · u ;

∠(u,v) = acos
comp

u
v

‖v‖ = acos
u · v

‖u‖ ‖v‖ .

Even lengths an be expressed using the dot produt:

‖v‖ =
√
v · v.

1.8 Row vetors

I developed the dot produt geometrially, and we ve seen that it s losely related to lengths and angles.

At the top of page 9 at the end of Setion 1.5, I remarked that lengths and angles don t always make sense

in ontext, and the same goes for the the dot produt (as well as projetions and omponents onto a given

vetor). For example, if x is measured in seonds (s) and y is measured in metres (m), then 〈1 s,−2m〉 ·
〈3 s, 5m〉 = 3 s2 − 10m2

doesn t really make sense.
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On the other hand, sometimes dot produts an make sense in a ontext like this. For example, sup-

pose that x represents the time at whih something ours and y represents its loation, so that the ve-

tor ∆P = 〈∆x,∆y〉 represents a passage of time together with a hange in loation, like the vetors in the

previous paragraph might do; then if the objet in question is a missile that s going to explode at some un-

kown time and distane and you think that it s going to move slowly while I think that it s going to move

quikly, then we might make a bet where I pay you $1 for every seond that it lasts until it explodes but

you pay me $2 for every metre that it travels. If it travels 5 metres in 3 seonds before exploding, then

you ll get (1)(3)− (2)(5) = −7 dollars, or put another way, you ll owe me $7. This an be represented as

the dot produt

〈$1/s,−$2/m〉 · 〈3 s, 5m〉 = ($1/s)(3 s) + (−$2/m)(5m) = $3− $10 = −$7,

where the �rst vetor is determined by the nature of our bet (you get $1 per seond and pay $2 per me-

tre), while the seond vetor is determined by the behaviour of the missile (it lasts 3 seonds and travels

5 metres).

Now, while the vetor 〈3 s, 5m〉 really does desribe a hange in x and a hange in y, where x and y
represent time and position as I stated above, the vetor 〈$1/s,−$2/m〉 does not. In the ontext of mea-

suring time and position, this vetor is a di�erent kind of vetor, one for whih a dot produt with an or-

dinary vetor makes sense, even though lengths and angles don t make sense for any of these vetors. A

vetor like this is variously alled a dual vetor, a ovetor, or a row vetor; in the last ase, an or-

dinary vetor may be alled a olumn vetor. I ll use the terminology of row and olumn vetors, whih

ultimately omes from matrix theory, as you ll see in Setion 1.13. Sometimes row vetors are distinguished

from olumn vetors by hoosing a di�erent notation for vetors from the ommon notations listed on

page 3. When olumn vetors are written

[
a
b

]
, row vetors are usually written [ a b ]. This notation al-

so omes from matrix theory, as you ll also see in Setion 1.13.

Row vetors obey the same rules of arithmeti as olumn vetors; here is a list of operations with

these that make sense even when lengths and angles do not:

• Addition: adding a olumn vetor to a point to get another point, adding two olumn vetors togeth-

er to get another olumn vetor, adding two row vetors together to get another row vetor;

• Subtration: subtrating a olumn vetor from a point to get another point, subtrating one olumn

vetor from another to get another olumn vetor, subtrating one row vetor from another to get

another row vetor;

• Multipliation: multiplying a olumn vetor by a salar to get another olumn vetor, multiplying a

row vetor by a salar to get another row vetor, multiplying a row vetor and a olumn vetor to get

a salar.

In partiular, there is no useful notion of `row point' that an interat with row vetors in the way that

points interat with olumn vetors.

1.9 Area

Now let s go bak to a geometri oneption of vetors. If you take two vetors u and v and plae them to

start at a point A, then you an onnet their endpoints to make a triangle and then ask what the area of

that triangle is. It s atually a bit nier to think of that triangle as half of a parallelogram: two opposite

sides of the parallelogram are u, one running from A to A+ u, the other running from A+ v to A+ v +
u; the other two opposite sides are v, one running from A to A+ v, the other running from A+ u to A+
u+ v (whih of ourse is the same as A+ v + u).

This question an be asked in any number of dimensions, and the answer may be written ‖u× v‖.
This notation suggests that this area will be the magnitude of something more fundamental, whih is u× v

itself, and this is true to an extent, but exatly how that works depends on how many dimensions we re in.

So for now, I m just going to stik with ‖u× v‖. However, I an give you the terminology: whatever u× v

is, the operation may be alled outer multipliation, and the result may be alled the outer produt

or the ross produt; and in 3 dimensions (where it is best known), it s also alled the vetor produt.
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With the help of trigonometry,

‖u× v‖ = ‖u‖ ‖v‖ sin∠(u,v).

Notie that this sine is always positive, sine the angle lies between 0 and π. For suh an angle θ, sin θ =√
1− cos2 θ; with the help of the dot produt, this means that

‖u× v‖ =
»
‖u‖2 ‖v‖2 − (u · v)2.

(This formula makes sense even if u or v is the zero vetor, in whih ase the result is zero.) If you write

out u · v in this expression in terms of the lengths ‖u‖, ‖v‖, and ‖u− v‖, then the formula fators as

‖u× v‖ =

√
−(‖u‖+ ‖v‖+ ‖u− v‖)(‖u‖+ ‖v‖ − ‖u− v‖)(‖u‖ − ‖v‖+ ‖u− v‖)(‖u‖ − ‖v‖ − ‖u− v‖)

2
.

(Despite the initial minus sign, the expression inside the square root is positive, sine the last fator is

negative.) This result was known to the anient Greek�Egyptian mathematiian and inventor Hero (or

Heron) of Alexandria, even though he didn t use vetors; he expressed it diretly using the distanes be-

tween the points. (Hero also invented the steam engine, the windmill, and the vending mahine, although

none of those aught on at the time.)

If u and v are parallel (or antiparallel), or if either (or both) of them is the zero vetor 0, then |u · v| =
‖u‖ ‖v‖, so ‖u× v‖ = 0. From another perspetive, if u and v are parallel, then the angle between them

is 0, whose sine is 0; if they re antiparallel, then the sine is sinπ, whih is still 0. In this ase, you don t

really have a parallelogram, but a simple line segment (or a point if u and v are both 0), whose area is

indeed 0.
Here are some important algebrai properties of ‖u× v‖:

‖u× v‖ = ‖v × u‖;
‖u× av‖ = |a| ‖u× v‖;

‖u× v‖ =
∥∥u× proj⊥

u
v
∥∥ = ‖u‖

∥∥proj⊥
u
v
∥∥
.

(The last of these assumes that u 6= 0, so that projetion perpendiular to u makes sense.) These should

be obvious geometrially; in partiular, the last of these states that the area of a parallelogram is the same

as the area of a retangle with the same base and height.

1.10 The ross produt in three dimensions

For vetors in R3
, we an interpret u× v as a vetor. The magnitude ‖u× v‖ is the area from the previ-

ous setion, so we only need to desribe the diretion of u× v: it will be perpendiular to both u and v.

Most of the time, there are preisely two diretions perpendiular to two vetors u and v in R3
. To

deide whih of these is the diretion of u× v, we use the right-hand rule: if you start by pointing the �n-

gers of your right hand in the diretion of u, url them to point in the diretion of v, and then stik out

your thumb, then your thumb will point roughly in the diretion of u× v. (This should be used togeth-

er with a right-handed oordinate system: if you point your �ngers along the positive x-axis, url them to

point along the positive y-axis, and then stik out your thumb, then your thumb will point roughly along

the positive z-axis.) If u and v happen to be parallel (or antiparallel), or if either (or both) of them is the

zero vetor 0, then this won t work; however, in that ase, ‖u× v‖ = 0, so then u× v must be 0, whih

has no diretion.

Like the dot produt, this operation distributes over addition and assoiates with salar multiplia-

tion:

u× (v +w) = u× v + u×w,

u× av = a(u× v).
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The latter fat is easy to see, sine we have a orresponding fat for ‖u× av‖ and the diretion of u× av
reverses when a is negative. The �rst of these is more di�ult; it uses the result for ‖u× v‖ in terms of

proj⊥
u
v. This allows you to draw everything in the plane perpendiular to u; if you look in the diretion

of u when looking at this plane, then u× v rotates proj⊥
u
v (whih is in this plane) lokwise through a

right angle and sales it by ‖v‖; sine both this operation and projetion distribute over addition, so does

the ross produt itself.

However, there is one important di�erene between the properties of the dot and ross produts:

u× v = −v× u.

This is beause, while the magnitudes are the same, the diretions are reversed, sine you re urling your

�ngers the other way.

For pratial alulations, it s again enough to know what happens to the standard basis vetors:

i× i = 0, i× j = k, i× k = −j,

j× i = −k, j× j = 0, j× k = i,

k× i = j, k× j = −i, k× k = 0.

Based on this,

〈a, b, c〉 × 〈d, e, f〉 = (ai+ bj+ ck)× (di+ ej+ fk) = (bf − ce)i+ (cd− af)j+ (ae− bd)k

= 〈bf − ce, cd− af, ae− bd〉.

For example,

〈1,−2, 0〉 × 〈2, 2, 1〉 = 〈(−2)(1)− (0)(2), (0)(2)− (1)(1), (1)(2)− (−2)(2)〉 = 〈−2− 0, 0− 1, 2 + 4〉 = 〈−2,−1, 6〉.

If you know about determinants, then you an think of

〈a, b, c〉 × 〈d, e, f〉 =

∣∣∣∣∣∣

i j k

a b c
d e f

∣∣∣∣∣∣
;

the value of this determinant is the value of the ross produt.

Along with the ross produt, people often look at the so-alled triple salar produt of three vetors

in R3
; this is simply

u · (v ×w).

This an be alulated with determinants as well:

〈a, b, c〉 · 〈d, e, f〉 × 〈g, h, i〉 =

∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
.

Geometrially, this represents a volume; more preisely, |u · v ×w| is the volume of a parallelepiped whose

edges are u, v, and w, and u · v ×w is positive if you an url the �ngers of your right hand from u to v

and stik out your thumb along w but negative if your thumb points the wrong way.
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1.11 The ross produt in two dimensions

For vetors in R2
, we an interpret u× v as a salar, so this is sometimes alled the salar ross produt.

The absolute value |u× v| is the ‖u× v‖ from Setion 1.9 starting on page 12; u× v itself is positive if

you turn ounterlokwise to go from u to v but negative if you turn lokwise. (Here I m assuming a

ounterlokwise oordinate system: the rotation from the positive x-axis to the positive y-axis is oun-
terlokwise.) If u and v are parallel (or antiparallel), or if either of them is the zero vetor 0, then u× v

is just 0.
The ross produt in 2 dimensions follows the same algebrai rules as in 3 dimensions:

u× (v +w) = u× v + u×w,

u× av = a(u× v),

u× v = −v× u.

If anything, these are easier to establish geometrially than the orresponding properties in R3
.

Another way to think of the salar ross produt is to embed R2
within R3

; that is, we take the z-o-
ordinate of every point to be �xed (typially z = 0), so that the z-omponent of every vetor is ∆z = 0.
Then instead of the salar ross produt u× v, you an speak of the triple salar produt k · u× v. Yet

another way to think of it is as a dot produt; muh as a− b is the sum of a and −b, so u× v is the dot

produt of u and ×v, where ×v is the result of rotating v lokwise through a right angle. (In general,

the result of rotating v lokwise by θ radians is cos θ v +× sin θ v; if you rotate ounterlokwise, as is

more ommon, then the result is cos θ v −× sin θ v.)
You an also speak of signed angles in 2 dimensions; if you treat a ounterlokwise angle as positive

and a lokwise angle as negative, then

u× v = ‖u‖ ‖v‖ sin ∠̄(u,v),

where the bar over the angle symbol indiates this signed angle. There s even a version of the signed an-

gle in 3 dimensions, making this same equation for u× v true; ∠̄(u,v) is a vetor whose magnitude is

the (positive) angle between u and v and whose diretion is given by the right-hand rule, while the sine

of this vetor is a vetor de�ned by sinw = sin ‖w‖ ŵ. (The osine of a vetor remains a salar: cosw =
cos ‖w‖.) This paragraph is not important for this ourse, but it has uses in physis related to angular

momentum.

For pratial alulations, sine i× i = 0, i× j = 1, j× i = −1, and j× j = 0, the formula is

〈a, b〉 × 〈c, d〉 = ad− bc.

For example,

〈1,−2〉 × 〈3, 5〉 = (1)(5)− (−2)(3) = 5 + 6 = 11.

If you know about determinants, then

〈a, b〉 × 〈c, d〉 =
∣∣∣∣
a b
c d

∣∣∣∣.

Similarly,

×〈a, b〉 =
∣∣∣∣
i j

a b

∣∣∣∣ = 〈b,−a〉.

Cross produts in more than 3 dimensions an also be done, but in that ase the result is neither a

salar nor a vetor but a more general onept alled a tensor. (Similarly, ×v alone is a tensor in more

than 2 dimensions.) While the ross produt in 4 dimensions (and ×v alone in 3 dimensions) an be inter-

preted as a matrix (see Setion 1.13), more general tensors are even more ompliated, and we will not be

using these in this ourse.
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1.12 Orientation

The dot and ross produts both rely on the geometri notion of length, but the ross produt addition-

ally depends on an orientation; this is the hoie between the right-hand and left-hand rules (in 3 di-

mensions) or between ounterlokwise and lokwise angles (in 2 dimensions). While our physial spae

really does have lengths and angles, the hoie of orientation is arbitrary, so results that apply to geometry

shouldn t depend on it.

Just as we an distinguish row vetors from olumn vetors in ontexts where lengths and angles

don t make sense, so we an distinguish axial vetors from polar vetors in ontexts where orientation is

arbitrary. So, a polar vetor is an ordinary vetor representing a hange in position, but an axial ve-

tor or pseudovetor is a vetor together with a hoie of orientation, where we may reverse our hoie

of orientation as we please so long as we replae the vetor with its opposite when we do so. For example,

while a polar vetor in R3
may be fully desribed as 〈−2,−1, 6〉, an axial vetor in R3

might be desribed

as 〈−2,−1, 6〉 right-handed, or (for the same axial vetor) as 〈2, 1,−6〉 left-handed. Thus you an say, for

example,

〈1,−2, 0〉 × 〈2, 2, 1〉 = 〈−2,−1, 6〉 right-handed = 〈2, 1,−6〉 left-handed.

(There is still a onvention in play here, however; in a left-handed oordinate system, you would write

〈1,−2, 0〉 × 〈2, 2, 1〉 = 〈−2,−1, 6〉 left-handed.)
Similarly, a pseudosalar is a salar together with a hoie of orientation, where again we may re-

verse our hoie of orientation as we please so long as we replae the salar with its opposite. In R2
, the

ross produt of two vetors is a pseudosalar; in R3
, the triple salar produt of three vetors is a pseu-

dosalar. For example,

〈1,−2〉 × 〈3, 5〉 = 11 ounterlokwise = −11 lokwise,

and

〈1,−2, 0〉 · 〈2, 2, 1〉 × 〈0, 3, 5〉 = 27 right-handed = −27 left-handed.

Axial vetors obey the same rules of arithmeti as polar vetors; here is a list of operations with these

that make sense in R3
:

• Addition: adding a polar vetor to a point to get another point, adding two polar vetors together to

get another polar vetor, adding two axial vetors together to get another axial vetor;

• Subtration: subtrating a polar vetor from a point to get another point, subtrating one polar ve-

tor from another to get another polar vetor, subtrating one axial vetor from another to get another

axial vetor;

• Salar multipliation: multiplying a polar vetor by a salar to get another polar vetor, multiplying

an axial vetor by a salar to get another axial vetor, multiplying a polar vetor by a pseudosalar to

get an axial vetor, multiplying an axial vetor by a pseudosalar to get a polar vetor;

• Inner multipliation (dot produt): multiplying two polar vetors to get a salar, multiplying a polar

vetor and an axial vetor to get a pseudosalar, multiplying two axial vetors to get a salar;

• Outer multipliation (ross produt): multiplying two polar vetors to get an axial vetor, multiplying

a polar vetor and an axial vetor to get a polar vetor, multiplying two axial vetors to get an axial

vetor.

Similarly, pseudosalars an be added or subtrated to produe more pseudosalars and an be multiplied

together to produe an ordinary salar, or you an multiply a salar and a pseudosalar to produe an-

other pseudosalar. In R2
, the list of operations is the same, exept that the result of a ross produt is a

salar or a pseudosalar rather than a vetor (a polar vetor) or a pseudovetor (an axial vetor).

The rule of thumb for all of this is that you an only add or subtrat things that are alike in every

way, but you an multiply anything together; the result is `pseudo' if you multiplied together an odd num-

ber of pseudothings (so pseudos anel, like minus signs, in pairs), where the ross produt introdues an

extra pseudo.

In the most general ase, where you don t have a good notion of length and also don t have any way

to prefer one orientation over another, you have polar olumn vetors (the ordinary notion of vetor), axial
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olumn vetors, polar row vetors, and axial row vetors. In general, only polar olumn vetors an in-

terat with points. None of this a�ets alulations when properly done, but like keeping trak of units,

keeping trak of variane (row vs olumn) and hirality (polar vs axial) an prevent you from aidentally

doing meaningless alulations.

1.13 Matries

This material is optional for now, but it will be useful in Setion 4.8. Reall from Setion 1.8 above that

we sometimes want to distinguish olumn vetors (the usual kind) from row vetors (whih appear in dot

produts with olumn vetors). One way to distinguish them that I mentioned is to write 〈a, b〉 as
[
a
b

]

when it s a olumn vetor but as [ a b ] when it s a row vetor. A matrix (plural matries) generalizes

both of these; it s an array of entries arranged in both olumns and rows. A typial example of a matrix is

ï
a b c
d e f

ò
;

this matrix has 2 rows and 3 olumns, so we all it a 2-by-3 matrix. Thus, a olumn vetor in n dimen-

sions is a matrix with n rows and 1 olumn (also alled a olumn matrix ), while a row vetor in n dimen-

sions is a matrix with 1 row and n olumns (also alled a row matrix ). But for matries in general, the

number of rows and the number of olumns ould eah be any whole number.

You an multiply any matrix by a salar, and you an add or subtrat two matries if they have the

same size to get another matrix of that size. This works entry by entry, just as with vetors. But there is

also an operation that generalizes the dot produt: matrix multipliation. In general, you an multi-

ply an m-by-n matrix and an n-by-o matrix to get an m-by-o matrix. The entry in row i and olumn j in
the produt matrix is obtained as the dot produt of row i of the �rst matrix and olumn j of the seond
matrix, eah thought of a vetor in n dimensions. (This operation distributes over matrix addition and

assoiates with salar multipliation, whih is why we an think of it as a kind of multipliation.) For ex-

ample, multiply the 2-by-3 matrix above by the 3-by-1 matrix that is the vetor 〈x, y, z〉 thought of as a
olumn matrix, to get a 2-by-1 matrix:

ï
a b c
d e f

ò

x
y
z


 =

ï 〈a, b, c〉 · 〈x, y, z〉
〈d, e, f〉 · 〈x, y, z〉

ò
=

ï
ax+ by + cz
dx+ ey + fz

ò
,

whih is the vetor 〈ax+ by + cz, dx+ ey + fz〉 thought of as a olumn matrix. (In a way, this is the most

fundamental thing that matries do: they transform vetors in a homogeneous linear way.) This opera-

tion has many uses, but the reason that I m bringing it up here is that you an use it in the multivariable

Chain Rule in Setion 4.8.

Another ommon operation on matries is the transpose. Although we won t really need it in this

ourse, there s some notation related to it that you might see even in material about vetors, so it s worth

mentioning here. This is the transpose, in whih the rows and olumns are swapped. The transpose of a

matrix A is denoted A⊤
; for example,

ï
a b c
d e f

ò⊤
=



a d
b e
c f



.

The upper left and lower right positions are unhanged, while the lower left and upper right swith plaes.

When applied to vetors, this operation turns row vetors into olumn vetors and olumn vetors into

row vetors. For this reason, yet another notation for the olumn vetor 〈a, b〉, whih is really a olumn

matrix

[
a
b

]
, is [ a b ]

⊤
. (That way, you an write it all in one line.) Conversely, an alternative notation

for the dot produt v ·w of two vetors (themselves thought of as olumn matries) is v⊤w; here, the

transpose turns the olumn matrix v into a row matrix, this 1-by-n row matrix v⊤
is multiplied by the

n-by-1 olumn matrix w to produe a 1-by-1 matrix (with only one entry), and this is then interprted as a

salar (its only entry). This is kind of a ompliated way to think of the dot produt, but some people like

to write it like that.
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2 Parametrized urves

Besides individual points and vetors, one an also onsider variable points and vetors, whih are the out-

puts of point- and vetor-valued funtions and an be interpreted geometrially as parametrized urves.

2.1 Point- and vetor-valued funtions

A point-valued funtion in Rn
onsists of n ordinary funtions, all with the same domain. For example,

a point-valued funtion in R2
onsists of 2 funtions with the same domain, say f(t) = t2 and g(t) = t3.

We put these together into a single funtion (f, g), whih takes a real-number t as input and produes the

point as output:

(f, g)(t) =
(
f(t), g(t)

)
= (t2, t3) = O + t2i+ t3j

(in this example), where O is the origin of a oordinate system and i and j are its standard basi vetors.

A vetor-valued funtion in Rn
also onsists of n ordinary funtions, all with the same domain. But

now we think of the output as a vetor:

〈f, g〉(t) = 〈f(t), g(t)〉 = 〈t2, t3〉 = t2i+ t3j

(in this example). If we want to know whether one of these funtions is ontinuous or di�erentiable, then

we just look at eah of its omponents separately. For example, sine the funtions f and g above are on-

tinuous and di�erentiable everywhere, so are the point-valued funtions (f, g) and the vetor-valued fun-

tion 〈f, g〉.
The textbook often doesn t distinguish between a point P and its position vetor r = P −O. Conep-

tually, they re very di�erent, sine you an talk about points and vetors geometrially without bringing

oordinates into it, so the onepts are meaningful even if you don t pik a point and all it the origin. On

the other hand, when doing alulations, it s easy to on�ate them; sine the oordinates of O are all 0,
when you do the subtration P −O to get r, you �nd that the omponents of r are exatly the same as

the oordinates of P . Still, you should always keep in mind whether a given expression really refers to a

point (a loation) or to a vetor (a movement).

In partiular, a point-valued funtion an be viewed as a parametrized urve; eah value of the

input t (whih in this ontext is alled a parameter) gives a point, and all of these points together make

up a urve. A vetor-valued funtion only de�nes a urve by interpreting eah vetor with referene to a

point O deemed to be the origin, but that is how the textbook insists on doing it starting in Chapter 12.

However, this isn t an issue in Chapter 10, sine the textbook isn t disussing vetors there.

2.2 Veloity and aeleration

If P is a point, then the di�erene ∆P is a vetor (beause it s the result of subtrating two points), and

then the di�erential dP is an in�nitesimal vetor. If P is a funtion of some salar quantity t, then dP/dt
makes sense, beause it s a vetor divided by a salar, but now it s no longer in�nitesimal (unless it hap-

pens to be zero). In other words, the derivative of a point with respet to a salar is a vetor. Another way

to see this is that if F is a point-valued funtion, then its derivative F ′
is a vetor-valued funtion:

F ′(t) = lim
h→0

Å
F (t+ h)− F (t)

h

ã
;

�rst subtrat two points to get a vetor, then divide by the salar h to get another vetor, and �nally take

the limit of these vetors to get a vetor. Of ourse, the derivative of a vetor with respet to a salar is

also a vetor; in other words, the derivative of a vetor-valued funtion is also a vetor-valued funtion.

For example, if P gives the position of some objet at time t, then P is a point, but dP/dt, the velo-

ity of the objet, is a vetor. (Note that the magnitude of this vetor is the objet s speed.) If we write v

for dP/dt (whih an also be written as dr/dt), then dv/dt is the aeleration of the objet, whih is also

a vetor. (Physiists and mehanial engineers use the word `aeleration' like this, to indiate any hange

in veloity �speed or diretion� over time. In everyday language, this word means something more like

d‖v‖/dt, the derivative of speed with respet to time, whih is the same as the salar omponent of the

aeleration in the diretion of the veloity. This is positive if the objet is speeding up and negative if the

objet is slowing down, or deelerating. Setion 12.5 of the textbook disusses all of this in detail, but we

won t get into it in this ourse.)
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2.3 Integrating vetor-valued funtions

Reversing this, if you take the inde�nite integral of a vetor, then the result may be either a point or a

vetor, beause di�erentiating either of these yields a vetor. This ambiguity is pakaged into the on-

stant of integration. For example,

r
〈2t, 3〉dt = 〈t2, 3t〉+ C, whih is a point if C is a point and a vetor

if C is a vetor. (If C is a vetor, then you may want to all it C instead, but that is just a onvention,

not a requirement.) The de�nite integral of a vetor, however, is always a vetor: fundamentally, you get

it by adding up in�nitely many in�nitesimal vetors (or approximate it by adding up a large number of

small vetors), and adding up vetors yields a vetor; in pratie, you usually alulate it by subtrating

inde�nite integrals, and regardless of whether you view the inde�nite integrals as points or as vetors, sub-

trating them yields a vetor. For example, both

r 1

t=0〈2t, 3〉dt = 〈t2, 3t〉|1t=0 = 〈1, 3〉 − 〈0, 0〉 = 〈1, 3〉, andr 1

t=0
〈2t, 3〉dt = (t2, 3t)|1t=0 = (1, 3)− (0, 0) = 〈1, 3〉 give the same result. In fat, either of them ould be

pakaged up as

w 1

t=0
〈2t, 3〉dt =

〈w 1

t=0
2t dt,

w 1

t=0
3 dt

〉
=
¨
t2|1t=0, 3t|

1
t=0

∂
= 〈1− 0, 3− 0〉 = 〈1, 3〉.

Putting this all together, onsider the initial-value problem in whih the aeleration of an objet is

−32k = 〈0, 0,−32〉 (whih is the aeleration of a freely falling objet near Earth s surfae, if we use units

of feet and seonds), the objet s initial veloity is 〈3, 0, 4〉 (so a speed of 5 ft/s eastward and upward with

a slope of 4/3), and the objet s initial position is (0, 0, 100) (so 100 feet above the origin on the ground).

Then you an alulate a general formula for the objet s position P as a funtion of the elapsed time t by
integrating:

dv

dt
= 〈0, 0,−32〉;

dv = 〈0, 0,−32〉dt;w
v=〈3,0,4〉

dv =
w
t=0

〈0, 0,−32〉dt;

v − 〈3, 0, 4〉 = 〈0, 0,−32t〉 − 〈0, 0,−32(0)〉;
v = 〈3, 0, 4〉+ 〈0, 0,−32t〉;

dP

dt
= 〈3, 0, 4− 32t〉;

dP = 〈3, 0, 4− 32t〉dt;w
P=(0,0,100)

dP =
w
t=0

〈3, 0, 4− 32t〉dt;

P − (0, 0, 100) = 〈3t, 0, 4t− 16t2〉 −
〈
3(0), 0, 4(0)− 16(0)

2〉
;

P = (3t, 0, 100 + 4t− 16t2).

In other words, the position after t seonds is 3t feet east of the origin at a height of 100 + 4t− 16t2 feet.

In the ourse of solving this, I ve used the semide�nite integral :

w
t=a

f(t) dt =
w t

τ=a
f(τ ) dτ .

The Fundamental Theorem of Calulus allows us to alulate these integrals easily if we already know an

inde�nite integral: w
t=a

F ′(t) dt = F (t)− F (a).

This is very handy when solving initial-value problems. Sine v = 〈3, 0, 4〉 when t = 0, I was doing the

same operation to both sides of the equation in the �rst step in whih I introdued semide�nite integrals;

similarly, the seond introdution of semide�nite integrals is valid beause P = (0, 0, 100) when t = 0. To
solve this problem using inde�nite integrals instead requires two extra steps (one for eah integration) to

�nd the onstants assoiated with the inde�nite integrals, but using semide�nite integrals avoids that.
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2.4 Standard parametrizations

The simplest urve to parametrize is a straight line. A line through the origin along a vetor 〈a, b〉 an be

parametrized with

x = at,

y = bt.

If you want a ray (half-line) starting at the origin and travelling in the diretion of this vetor, then use

the same formulas for x and y but add the restrition t ≥ 0 for a losed ray (inluding the endpoint at

the origin) or t > 0 for an open ray (not inluding that endpoint). For a line segment running along the

length of that vetor, use the restrition 0 ≤ t ≤ 1 for a losed line segment (inluding both endpoints) or

0 < t < 1 for an open line segment (inluding neither endpoint). (It s also possible to onsider half-open

and half-losed line segments.) For both rays and line segments, the losed version is the usual standard,

although there are times when another version is needed instead.

If the line (or ray or line segment) doesn t go through the origin, then you ll need some point (x1, y1)
that it does go through. Then you an use

x = x1 + at,

y = y1 + bt.

Again, without any restrition on t, this is a line; but you an restrit t as above to get a ray or a line seg-

ment. Or if you have two points on the line, then you an subtrat them to get the relevant vetor. Then

the parametrization beomes

x = x1 + (x2 − x1)t,

y = y1 + (y2 − y1)t.

All of this works in any number of dimensions; the line through P1 along the vetor v has the parametri-

zation

P = P1 + tv,

and the line through P1 and P2 is

P = P1 + t(P2 − P1).

The same restritions on t as before will turn these into rays or line segments.

Going bak to 2 dimensions, the unit irle (whose radius is 1 and whose entre is at the origin) is

usually parametrized like this:

x = cos t,

y = sin t.

If there are no restritions on t, then you are e�etively going around and around the irle forever, oun-

terlokwise (in a ounterlokwise oordinate system). If you want the parametrization to be one-to-one,

so that every point on the irle is overed exatly one, then you need a restrition on t; the usual one is
0 ≤ t < 2π. It s even more ommon to use

0 ≤ t ≤ 2π;

this is almost one-to-one (sine only the point (1, 0) is overed twie, one when t = 0 and one when t =
2π), and it has a ompat domain (whih is helpful for some things). So this restrition is the standard

one for a irle.

If the radius of the irle is r, then the parametrization beomes

x = r cos t,

y = r sin t.

If the irle is entred at (h, k) instead of at the origin, then the parametrization beomes

x = h+ r cos t,

y = k + r sin t.
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You use the same restritions as before to make the parametrization one-to-one or almost one-to-one.

Another useful parametrization is the graph of a funtion f . For this, you an use x itself as the pa-

rameter:

x = t,

y = f(t).

Sine you an always all the parameter something else instead of t, you an even all it x:

x = x,

y = f(x).

If you only want the graph of the funtion restrited to an interval [a, b], then plae this restrition on the

parameter:

a ≤ t ≤ b

(or a ≤ x ≤ b if you are alling the parameter x instead of t). This works more generally any time you

have an equation that you an solve for y; if you get a unique solution, then this equation de�nes a fun-

tion, and the equation y = f(x) in the parametrization above is the equation that you get when you solve

for y.
If you solve for x instead of for y, then you an say that x is some funtion g of y. This isn t the graph

of that funtion exatly, sine the variables ome in the wrong order, but you an still parametrize the

urve using y as the parameter:

x = g(t),

y = t.

Again, you an put a restrition on t if you only want ertain values of the independent variable, whih is

now y.

2.5 Linear geometry

There are some formulas in Setion 11.5 of the textbook that an be made simpler by doing arithmeti

with points and vetors (instead of just with vetors as the book does) or by using the 2-dimensional ross

produt (instead of only the 3-dimensional ross produt as the book does).

A parametri equation for the line through a point P0 in the diretion of a nonzero vetor v is

P = P0 + tv,

where t is the parameter and P = (x, y) or P = (x, y, z) is a point on the line. Similarly, a parametri

equation for the line through points P1 and P2 is

P = P1 + t(P2 − P1).

A nonparametri equation for the line through P0 in the diretion of v in 2 dimensions is

(P − P0)× v = 0.

Similarly, a system of equations for the line through P0 in the diretion of v in 3 dimensions is

(P − P0)× v = 0.

(The only di�erene is whether the zero on the right-hand side is the salar 0 or the vetor 0.)

The distane from a point S to the line through P0 in the diretion of v is

‖(S − P0)× v̂‖ =
‖(S − P0)× v‖

‖v‖ .
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Similarly, the distane from S to the line through P1 and P2 is

‖(S − P1)× (P2 − P1)‖
‖P2 − P1‖

.

An equation for the line (in 2 dimensions) or plane (in 3 dimensions) through P0 and perpendiular to

a nonzero vetor n is

(P − P0) · n = 0.

Finally, the distane from S to the line or plane through P0 and perpendiular to n is

‖(S − P0) · n̂‖ =
‖(S − P0) · n‖

‖n‖ .

2.6 Derivatives and parametrized urves

If x and y are given as funtions of t, as happens with a parametrized urve in 2 dimensions, then the for-

mulas for derivatives of y with respet to x, in terms of the derivatives of x and y with respet to t, ought
to fall diretly out of the notation. Unfortunately, the usual notation for higher derivatives prevents this.

To see how this should work, onsider the �rst derivative. There, the formula is

dy

dx
=

dy/dt

dx/dt
.

That is, simply divide both sides of the fration by dt. Another even sliker way to do this would be to

reinterpret the di�erentials as derivatives with respet to t; that is, writing a dot above a quantity to indi-

ate di�erentiation with respet to t, write
dy

dx
=

ẏ

ẋ
.

But If you try to do this with seond derivatives, based on the usual notation for them, then you get a

formula whih is wrong :

d2y

dx2
6= ÿ

ẋ2
=

d2y/dt2

(dx/dt)2
.

(Here, I ve written ` 6=' to show that `=' would have been wrong, but it s possible that these may happen

to be equal in ertain examples.)

To get the orret formula instead, we simply need to di�erentiate ẏ/ẋ using the Quotient Rule:

Å
d

dt

ãÅ
ẏ

ẋ

ã
=

ẋdẏ/dt− ẏ dẋ/dt

ẋ2
=

ẋÿ − ẏẍ

ẋ2
.

Dividing by ẋ to hange d/dt to d/dx, the seond derivative of y with respet to x is

(d/dx)
2
y =

ẋÿ − ẏẍ

ẋ3
=

ÿ

ẋ2
− ẏ

ẋ
· ẍ

ẋ2
;

in other words, the na��ve formula is only the �rst term of a two-term expression. This formula is a little

long, but it will orretly give you the seond derivative of y with respet to x using the �rst and seond

derivatives of x and y with respet to t.
There is a symbol for the seond derivative using di�erentials that an serve as a mnemoni for this.

To get it, we again di�erentiate dy/dx using the Quotient Rule, only now using the Quotient Rule for dif-

ferentials rather than the Quotient Rule for derivatives:

d

Å
dy

dx

ã
=

dxd(dy)− dy d(dx)

(dx)2
=

dxd2y − dy d2x

dx2
.
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Dividing by dx to turn d into d/dx, the seond derivative of y with respet to x is

(d/dx)2y =
dxd2y − dy d2x

dx3
=

d2y

dx2
− dy

dx
· d

2x

dx2
.

As you an see, replaing `d's with dots throughout gives the formula from the previous paragraph again.

For this reason, I don t like to write d2y/dx2
for the seond derivative of y with respet to x. Of ourse,

nobody wants to write the formula from the previous paragraph when they just want a symbol for the se-

ond derivative; fortunately, you an write (d/dx)
2
y for that. This simply means that you apply the op-

eration d/dx (�nd the di�erential and then divide by dx, or equivalently �nd the derivative with respet

to x) twie to get the seond derivative, whih is ertainly orret. You an even use this as a mnemoni

for �nding this seond derivative: instead of interpeting d/dx as taking the di�erential and then dividing

by dx, interpret it as taking the derivative with respet to t and then dividing by ẋ. This is essentially
how the textbook tells you to take the seond derivative.

Finally, whether you use either (dxd2y − dy d2x)/dx3
or (d/dx)2y, either way you an perform pra-

tial alulations by interpreting the di�erentials literally. You simply have to write everything in terms

of t, put dt and d2t in where they naturally appear, and �nd that the di�erentials of t anel in the �nal

answer. Alternatively, antiipating that the di�erentials of t will anel, you an ignore them, whih turns

taking di�erentials into taking derivatives with respet to t again.
I ll do Example 10.2.2 starting on page 589 of the textbook to illustrate all of these approahes. (In

that example, x = t− t2, y = t− t3, and you are asked to �nd (d/dx)
2
y.) First, dx = dt− 2t dt, or ẋ =

dx/dt = 1− 2t. Next, d2x = d2t− 2 dt2 − 2t d2t (whre I ve applied the Produt Rule to the seond term

of dx), while ẍ = −2. Similarly, dy = dt− 3t2 dt, or ẏ = 1− 3t2. Next, d2y = d2t− 6t dt2 − 3t2 d2t, while
ÿ = −6t.

Now, to �nd (d/dx)y = dy/dx, either diretly divide (dt− 3t2 dt)/(dt− 2t dt) and simplify this (by

anelling fators of dt) to (1− 3t2)/(1− 2t), or instead divide ẏ/ẋ, whih again gives (1− 3t2)/(1− 2t).

(This is pretty muh the same proess, no matter how you go about it.) Then to �nd (d/dx)
2
y, one way is

to di�erentiate (d/dx)y (found on the previous page) with respet to x again. Either take

d
Ä
1−3t2

1−2t

ä

dx
=

2 dt−6t dt+6t2 dt

(1−2t)2

dt− 2t dt

and simplify by anelling fators of dt, or take

(d/dt)
Ä
1−3t2

1−2t

ä

ẋ
=

2−6t+6t2

(1−2t)2

1− 2t
;

either way, you get

(d/dx)
2
y =

2− 6t+ 6t2

(1− 2t)
3 .

This is essentially how the textbook does this problem.

Alternatively, using the formula

(d/dx)
2
y =

dxd2y − dy d2x

dx3
,

we immediately get

(dt− 2t dt)(d2t− 6t dt2 − 3t2 d2t)− (dt− 3t2 dt)(d2t− 2 dt2 − 2t d2t)

(dt− 2t dt)3
,
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whih simpli�es drastially to the same answer as above. (Notie that there is no need to work out dy/dx
�rst!) Or using

(d/dx)
2
y =

ẋÿ − ẏẍ

ẋ3
,

you immediately get

(1− 2t)(−6t)− (1− 3t2)(−2)

(1− 2t)
3 ,

whih simpli�es (somewhat less drastially) to the same answer one again. I prefer this last method,

whih gets the answer in one step after the preliminary alulations and doesn t require quite as muh al-

gebra to simplify as the orresponding method using di�erentials.

2.7 Arlength

When �nding the length of a urve by integration, you are ultimately integrating an expression suh as√
dx2 + dy2. This partiular expression applies in 2 dimensions; in words, it is the prinipal square root

of the sum of the square of the di�erential of x and the square of the di�erential of y. An expression like

this, ontaining di�erentials, is alled a di�erential form; the textbook mentions di�erential forms brie�y

in Setion 15.3, but they are really all over the plae in multivariable Calulus, sometimes hidden just un-

der the surfae, sometimes out in the open without being aknowledged. I ll try to point them out when-

ever they appear.

This partiular di�erential form is alled the arlength element and is traditionally written ds (al-
though that notation is misleading for reasons that I will return to on pages 50&51). A simpler way to

think of ds, whih works in any number of dimensions, is as ‖dP‖, the magnitude of the di�erential of the

position P . Remember that dP is a vetor when P is a point, so it has a magnitude; in fat, dP is the

same as dr (where r = P −O), so you an also think of ds as ‖dr‖, the magnitude of the di�erential of the

position vetor r. In 2 dimensions, where P = (x, y) and r = 〈x, y〉, dr = dP = 〈dx, dy〉, whose magnitude

is the arlength element that I wrote down in the previous paragraph. In 3 dimensions, dP = 〈dx, dy, dz〉,
whose magnitude is ds =

√
dx2 + dy2 + dz2.

When working with a parametrized urve, every variable (x and y, and z if it exists, whether individ-

ually or ombined into P or r) is given as a funtion of some parameter t. By di�erentiating these, their

di�erentials ome to be expressed using t and dt. The absolute value |dt| will naturally appear in the inte-

grand; but if you set up the integral so that t is inreasing, then dt is positive, so |dt| = dt. Then you an

write ‖dP‖ as ‖v‖ |dt| = ‖v‖ dt, where v = dP/dt = dr/dt is the veloity, as given in the textbook. More

expliitly, this is

ds =

√Å
dx

dt

ã2
+

Å
dy

dt

ã2
dt

(in 2 dimensions), whih is also given in the textbook. But while you might integrate this in pratie to

perform a spei� alulation, you are most fundamentally integrating a di�erential form in whih t does
not appear. This is why the result ultimately does not depend on how you parametrize the urve. (In

Chapter 5, I ll disuss what it means, in general, to integrate a di�erential form along a urve, inluding

why and to what extent this is independent of any parametrization.)

2.8 Polar oordinates

In addition to the usual retangular oordinates, there are other ways to represent points in R2
or R3

as

pairs or triples of real numbers. Polar oordinates are a widely used example.

Polar oordinates represent vetors more diretly than points, so perhaps we should speak �rst of po-

lar omponents. Polar omponents are based on lengths and angles. We ve dealt before with lengths of

vetors and angles between them, but now I ll need an angle for a single vetor in 2 dimensions, alled

the phase of the vetor. Just as a vetor s length (or magnitude) is relative to the standard basis vetor

i (or j), its phase will be the angle relative to i; atually, j matters too, beause it s a signed angle in the
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diretion of j. That is, if the vetor is in the same diretion as i, then its phase is 0; if it s in the same di-

retion as j, then its phase is π/2; and so on. Turning from i towards j (whih is usually oriented to be

ounterlokwise) is a positive phase; turning the other diretion is a negative phase.

Expliitly, given a vetor v = 〈a, b〉, the phase ∠v of v is the signed angle from i to v desribed on

page 15 in Setion 1.11, whih is ∠̄(i,v) in the notation of that paragraph. This means that its sine sat-

is�es the equation i× v = ‖i‖ ‖v‖ sin∠v = ‖v‖ sin∠v (sine ‖i‖ = 1). Of ourse, its osine satis�es the
equation i · v = ‖i‖ ‖v‖ cos∠v = ‖v‖ cos∠v. This makes it easy to reover the usual retangular ompo-

nents from the magnitude and phase, sine i× 〈a, b〉 = b and i · 〈a, b〉 = a. Thus,

v = 〈‖v‖ cos∠v, ‖v‖ sin∠v〉.

Atually, we an generalize this a bit; if r and θ are any real numbers suh that v = 〈r cos θ, r sin θ〉, then
we say that r and θ (in that order) are polar omponents of v. In this ase, r = ‖v‖ if r > 0, but you
an also have r = −‖v‖ if r < 0. And θ an be any angle suh that v̂ = 〈cos θ, sin θ〉 (so that θ is ∠v +
2πk for some integer k) if r > 0, but v̂ = 〈− cos θ,− sin θ〉 (so that θ is ∠v + π + 2πk for some k) if r < 0.
It s important that polar omponents are not unique; if you are hoosing r and θ, then you an impose

a onvenient restrition, suh as r ≥ 0 (whih is almost always imposed when possible) and 0 ≤ θ < 2π
(whih is often imposed but less often) or −π < θ ≤ π (whih is also fairly ommon). However, if you are

given r and θ, then none of these restritions is guaranteed to hold. Finally, if v is the zero vetor 0 =
〈0, 0〉, then you an only have r = 0, but now θ an be anything at all!

To desribe a vetor using its polar omponents, there are various tehniques. Sometimes people sim-

ply write 〈r, θ〉 and make a note somewhere that this is polar instead of retangular; this works if you al-

ways use polar omponents, but otherwise it s onfusing, so I will never do this. Sometimes people write

〈r; θ〉 instead; the semiolon is supposed to indiate polar omponents. You should not write ri + θj; if
you want to write it out using operations on the standard basis vetors, then it has to be r cos θ i+ r sin θ j
or r(cos θ i+ sin θ j). Another method is to write ∠θ for 〈cos θ, sin θ〉 = cos θ i+ sin θ j; then you an write

r∠θ for the vetor. This is probably the slikest method, but you need to be areful with it, sine the op-

erator ∠ in ∠θ, where θ is a salar, is more or less inverse to the operator ∠ in ∠v, where v is a vetor.

(Spei�ally, ∠∠v = v̂, while ∠∠θ = θ if −π < θ ≤ π, and more generally ∠∠θ = θ + 2πk, where k the in-

teger suh that k ≤ π−θ

2π < k + 1. These are not formulas that you re likely to ever need; just keep in mind

the two inverse meanings of ∠.)

One you understand polar omponents of vetors, polar oordinates of points are straightforward.

In retangular oordinates, the point (x, y) is the origin O plus the vetor 〈x, y〉, so now we just write

this vetor in polar omponents. That is, r and θ (in that order) are polar oordinates of a point P if

P = O+ r∠θ. Instead of O+ r∠θ, it s more ommon to write (r; θ) (with a semiolon again); or even just

(r, θ) (with a note that these are polar oordinates). More expliitly, if P = (x, y), then the requirement

for r and θ is

x = r cos θ,

y = r sin θ.

Any numbers r and θ that satisfy these two equations give polar oordinates for the point (x, y). (If you
don t learn anything else in this setion, learn these two equations.)

Given r and θ, it s easy to alulate x and y, as above. Going bak is trikier. If you square the equa-

tions and add them together (using cos2 θ + sin2 θ = 1 to simplify), then you get x2 + y2 = r2. If you re
hoosing r, then you an insist on r ≥ 0, and then r =

√
x2 + y2. If you go bak to the original two equa-

tions and divide the seond by the �rst, then you get y/x = tan θ (at least if x 6= 0), so if you impose −π/2 <
θ < π/2, then θ = atan (y/x). However, you annot impose both of these requirements! (For example, if

(x, y) = (−1, 0), then
√
x2 + y2 = 1 and atan (y/x) = 0, but (1 cos 0, 1 sin 0) = (1, 0), not (−1, 0). This

problem will ome up whenever x < 0.) So while these equations for r and θ are both well known and eah

of them is valid on its own, you an t use both of them at one. A ompatible system of restritions, prob-

ably the one most ommonly used, is to keep r ≥ 0 but ombine it with 0 ≤ θ < 2π. Sometimes people

will also require θ = 0 if r = 0, just to make the solution unique. Then you an still use

r =
√
x2 + y2,
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but now θ is a little more ompliated:

θ =

{
acos (x/r) for y ≥ 0, r > 0,
2π − acos (x/r) for y < 0, r > 0,
0 for r = 0.

Sometimes it s easier to �nd θ using trial and error. Just remember that you an make these formulas true

if you want to, as long as you are given x and y and are hoosing whih r and θ to use with them; but you

don t need to use them, and you an

′
t assume them if you re given r and θ by someone else.

2.9 Parametrized urves in polar oordinates

It s very ommon to desribe a parametrized urve by giving r as a funtion of θ. That is, θ is the param-

eter, and you have a funtion f suh that x = f(θ) cos θ and y = f(θ) sin θ. As a parametrized urve often

omes with a restrition on the parameter, so this often omes with the restrition that 0 ≤ θ < 2π; even
more ommon is 0 ≤ θ ≤ 2π (so that the domain of the parametrization will be ompat). However, the

restrition may be di�erent, or they may be no restrition. This is one situation where you annot assume

that r ≥ 0! If the funtion f always takes nonnegative values, �ne, but if it may take negative values, then

you need to aept that.

Although these work like any other parametrized urve, it s also possible to develop spei� formulas

for this situation. These are based on dx = cos θ dr − r sin θ dθ = f ′(θ) cos θ dθ − f(θ) sin θ dθ and dy =
sin θ dr + r cos θ dθ = f ′(θ) sin θ dθ + f(θ) cos θ dθ. Dividing these and anelling dθ,

dy

dx
=

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
.

A partiularly important ase of this is when r = 0; then substituting zero for f(θ) and anelling f ′(θ),

dy

dx

∣∣∣∣
r=0

= tan θ.

This result an be helpful just for graphing. Another fat useful for graphing, at least when there are

no restritions on θ, is that beause extreme values of y an happen only when dy is zero or unde�ned, the

highest and lowest points on the graph an only our when f ′(θ) sin θ + f(θ) cos θ is zero or unde�ned;

similarly, the leftmost and rightmost points an only our when f ′(θ) cos θ − f(θ) sin θ is zero or unde-

�ned.

The arlength element is

ds =
√
dx2 + dy2 =

√
dr2 + r2 dθ2 =

»
f ′(θ)

2
+ f(θ)

2 |dθ|,

where sin2 θ + cos2 θ = 1 is used to simplify the formula. Therefore, the length of the urve given in polar

oordinates by r = f(θ) and α ≤ θ ≤ β is

w β

θ=α

»
f ′(θ)

2
+ f(θ)

2
dθ,

as long as α ≤ β and f is di�erentiable on [α, β].
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2.10 Polar oordinates in higher dimensions

The simplest way to use polar oordinates in 3 (or more) dimensions is to replae x and y with r and θ,
then keep z (and any other retangular oordinates in higher dimensions). This is alled ylindrial o-

ordinates. So the equations for ylindrial oordinates are

x = r cos θ,

y = r sin θ,

z = z;

notie that z does double duty as both a retangular oordinate and a ylindrial oordinate. If v = 〈x, y, z〉,
then we an write v = r∠θ + zk, where ∠θ = cos θ i+ sin θ j as before, only now this is intepreted in 3 di-

mensions as ∠θ = 〈cos θ, sin θ, 0〉. Similarly, if P = (x, y, z), then P = O+ r∠θ + zk.
Note that r here is not the magnitude of the vetor 〈x, y, z〉 (unles z = 0). Another way to use polar

oordinates in higher dimensions is to use this magnitude, whih we all ρ (at least in 3 dimensions), and

more angles. Spei�ally, swith from (z, r) to (ρ, φ) in exatly the same way that polar oordinates swith

from (x, y) to (r, θ). That is, z = ρ cosφ, and r = ρ sinφ. These are alled spherial oordinates, with
this �nal set of equations:

x = ρ sinφ cos θ,

y = ρ sinφ sin θ,

z = ρ cosφ.

As with ordinary polar oordinates, you an impose the restrition that ρ ≥ 0; if you also have r ≥ 0, then
you an impose 0 ≤ φ ≤ π, whih is espeially onvenient. In partiular, you an alulate ρ and φ with

ρ =
√
r2 + z2,

φ = acos (z/ρ) for ρ > 0;

the only speial ase is when ρ = 0 (in whih ase φ ould be anything, although the usual default is φ = 0
when ρ = 0). But again, if you are given spherial oordinates from someone else, then you an t assume

that they follow these restritions! That said, ρ ≥ 0 and 0 ≤ φ ≤ π are imposed extremely often.

While I m on the subjet, I should also warn you that di�erent disiplines and di�erent ountries use

di�erent standard symbols for the polar oordinates. It s very ommon for φ and θ to be swapped om-

pletely (inluding using only φ in 2 dimensions), and r and ρ are also usually swapped, at least in 3 di-

mensions. It s pretty muh only North Amerian mathematiians who use the symbols as they are used

in our textbook and as I have used them here. So wath out for this if you go to Europe or take a physis

lass!
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3 Funtions of several variables

While a parametrized urve is given by a point-valued funtion, that is a funtion that takes a salar (a

number) as input and gives a point as output, the main objet of study in this lass is the reverse: a fun-

tion that takes a point as input and gives a number as output. Sine a point is given by a list of numbers

(its oordinates), a funtion of this sort an also be viewed as taking a list of numbers as input; for this

reason, we all it a funtion of several variables (the variables in question being those that stand for

the input numbers).

3.1 The hierarhy of funtions and relations

There are many di�erent types of mathematial objets that we ould study in this lass. Some of them

are relation-like objets:

• truth values,

• sets,

• relations,

• ternary relations,

• quaternary relations,

• et;

some of them are funtion-like objets:

• onstants,

• funtions,

• binary funtions,

• ternary funtions,

• et.

As you go along these lists, both the number of variables and the number of dimensions needed for graph-

ing inrease, as in the following diagram:

truth values

ww♦♦
♦♦
♦

❖❖
❖❖

❖❖

zero dimensions onstants

♦♦
♦♦
♦♦

''
❖❖

❖❖
❖

sets

ww♦♦
♦♦
♦

❖❖
❖❖

❖
no variables

one dimension funtions

♦♦
♦♦
♦

''
❖❖

❖❖
❖

relations

ww♦♦
♦♦
♦

❖❖
❖❖

❖
one variable

two dimensions binary funtions

♦♦
♦♦
♦

''
❖❖

❖❖
❖

ternary relations

ww♦♦
♦♦
♦

❖❖
❖❖

❖
two variables

three dimensions ternary funtions

♦♦
♦♦
♦

''
❖❖

❖❖
❖

quaternary relations

ww

three variables

A truth value is either true or false; any statement with no variables in it, suh as the statement

that 0 < 2, should evaluate to true or false (in this ase, true). To indiate that you are talking about the

truth value of this statement, rather than asserting the statement itself, you an put urly braes around

it (although there are several other notations used for this); for example, {0 < 2} is the truth value that
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0 is less than 2, whih is the true truth value rather than the false one. The graph of the true truth val-

ue is a solid dot, while the graph of the false truth value is a hollow irle; either way, this takes zero di-

mensions. You an also use a variable to give a name to a truth value, so maybe p stands for {0 < 2}; we
won t need to do that in this ourse, but you ll do it onstantly if you take a ourse on Logi.

A onstant is, in this lass, a real number, suh as −2. Any expression with no variables should eval-

uate to a onstant (possibly unde�ned), and we use one dimension to graph a onstant on a number line.

Again, you an use a variable to stand for a onstant, so maybe a stands for −2; in other words, a = −2.
A set is, in the simplest ase, a set of real numbers. A statement with one variable de�nes a set, suh

as {x | x < 2}, the set of real numbers that are less than 2. We again use one dimension to graph a set. If

A stands for the set {x | x < 2}, then these two statements mean the same thing:

• x ∈ A, usually pronouned `x in A';
• x < 2.

The �rst of these says that x belongs to the set A, while the seond uses the de�nition of A to say preise-

ly what that means about x.
A funtion, or unary funtion for emphasis, is a rule for taking a number (the input) and using it to

alulate a number (the output). An example is (x 7→ x− 2), the rule whih subtrats 2 from any num-

ber. To graph a funtion, we need two dimensions, one for the input and one for the output. If f stands

for the funtion (x 7→ x− 2), then these two expressions mean the same thing:

• f(x), usually pronouned `f of x';
• x− 2.

The �rst of these is the value of the funtion f at the argument x, while the seond uses the de�nition of

f to say preisely what that means in terms of x.
A relation, or binary relation for emphasis, is a set of ordered pairs instead of a set of individual

numbers. An example is {x, y | x+ y < 2}. We again use two dimensions to graph a relation. If R stands

for the relation {x, y | x+ y < 2}, then these two statements mean the same thing:

• (x, y) ∈ R;
• x+ y < 2.

The �rst of these says that x and y are related by the relation R, while the seond uses the de�nition of R
to say preisely what that means in terms of x and y.

A binary funtion, or funtion of two variables, is a rule for taking an ordered pair of two inputs

and using it to alulate an output. An example is (x, y 7→ x+ y − 2), the rule whih subtrats 2 from

the sum of the two inputs. To graph a binary funtion, we need three dimensions, two for the inputs and

one for the output. If g stands for the funtion (x, y 7→ x+ y − 2), then these two expressions mean the

same thing:

• g(x, y);
• x+ y − 2.

A ternary relation, or relation between three variables, is a set of ordered triples instead of a set of

ordered pairs. An example is {x, y, z | x+ y + z < 2}. We again use three dimensions to graph a ternary

relation.

A ternary funtion, or funtion of three variables, is a rule for taking an ordered triple of three in-

puts and using it to alulate an output. An example is (x, y, z 7→ x+ y + z − 2), the rule whih sub-

trats 2 from the sum of the three inputs. To graph a ternary funtion, we need four dimensions, three for

the inputs and one for the output.

A quaternary relation, or relation between four variables, is a set of ordered quadruples. An exam-

ple is {x1, x2, x3, x4 | x1 + x2 + x3 + x4 < 2}. We again use four dimensions to graph a quaternary rela-

tion.

We an ontinue with quaternary funtions, quinary funtions, et, whih are funtions of four or

more variables; and we an ontinue with quinary relations, senary relations, et, whih are relations be-

tween �ve or more variables. (But around this point, most people stop using the `� ary' terms, beause few

people an remember them.)
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There are various relationships between these di�erent kinds of objets:

• The domain of a funtion of n variables is a relation between n variables (the same n variables); giv-

en values of these variables, those values are related by the domain (or equivalently, the point whose

oordinates are those values belongs to the domain) if and only if the funtion is de�ned at those val-

ues.

• The range of a funtion of any number of variables is a set (a relation with 1 variable, the output);

given a value of that variable (a number), that number belongs to the range if and only if there is

some point in the domain where the value of the funtion is that number.

• The graph of a funtion of n variables is the graph of a relation between n+ 1 variables (the n input

variables plus the 1 output variable), whih ontains all of the information in the funtion:

gr f = {x1, . . . xn, c | f(x1, . . . , xn) = c}.

For example, a binary funtion (a funtion of 2 variables) has a relation (a binary relation, a relation be-

tween 2 variables) as its domain, a set (a unary relation, a relation with 1 variable) as its range, and a

ternary relation (a relation between 3 variables) as its graph. In partiular, if f(a, b) = c, then (a, b) ∈
dom f (where dom f is the domain of f), c ∈ ran f (where ran f is the range of f), and (a, b, c) ∈ gr f (where

gr f is the relation whose graph is the same as the graph of f). Conversely, if (a, b, c) ∈ gr f , then f(a, b) =
c, so the ternary relation gr f ontains all of the information in the binary funtion f .

3.2 De�nitions for funtions of several variables

In order to form preise de�nitions of various onepts related to funtions of several variables, it s handy

to piggybak on the de�nitions for funtions of one variable. This is not the way that the book writes its

de�nitions, but it s the way that I prefer.

Reall that a parametrized urve, or point-valued funtion, takes a number to a point (in however

many dimensions we re dealing with, typially 2 or 3 dimensions). That is, if C is a parametrized urve

and t is a real number, then C(t) is a point P = (x, y), P = (x, y, z), et. Meanwhile, a funtion of several

variables (however many variables we re dealing with, typially 2 or 3 variables) takes a point to a num-

ber; that is, if f is a funtion of 2 or 3 variables and P = (x, y) or P = (x, y, z) is a point in 2 or 3 dimen-

sions, then f(P ) = f(x, y) or f(P ) = f(x, y, z) is a real number c. If we ombine these by omposition of

funtions, then f ◦ C is an ordinary funtion; that is, if t is a real number, then so is (f ◦ C)(t):

(f ◦ C)(t) = f
(
C(t)

)
= f(P ) = c.

From one-variable Calulus, you should know how to de�ne various onepts (ontinuity, limits, dif-

ferentiability, derivatives, di�erentials) for ordinary funtions. It s easy to extend these onepts to vetor-

and point-valued funtions (parametrized urves), sine these simply onsist of several ordinary funtions

(the oordinates or omponents). So to de�ne these onepts for funtions of several variables, we typial-

ly use a formula like this:

If f ◦ C has a ertain property whenever C does, no matter what C might be (as long as it has

the property), then that s what it means for f to have that property.

This formula doesn t always work perfetly; for one thing, we often want to say more than just a Yes/

No property, and it may not be obvious what matters about C or how to extrat the appropriate informa-

tion from the omposites. Besides that, even when this formula would make perfet sense, sometimes some

of the nie theorems that we would expet aren t always true, whih means that we should look for a mod-

ifed de�nition that makes the theorems work. (That s what mathematiians really want from a de�nition;

they re not handed down from on high but developed for the purpose of getting orret results.) Neverthe-

less, all of the de�nitions here will be based on something like this formula.
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3.3 Continuity

Continuity follows the general formula preisely. A funtion f of several variables is ontinuous if, when-

ever C is a ontinuous parametrized urve, the omposite f ◦ C is a ontinuous funtion. (It wouldn t be

fair to expet f ◦ C to be ontinuous unless C is ontinuous as well as f , but if both C and f are ontinu-

ous, then their omposite ought to be as well.)

Sometimes we want to look at ontinuity in more detail; in general, to say that a funtion is ontin-

uous really means that it s ontinuous at every number in its domain. So for a funtion of several vari-

ables, we want to talk about ontinuity at partiular points in its domain. A funtion f is ontinuous

at a point P0 in the domain of f if, whenever C is a parametrized urve and t0 is a number suh that

C(t0) = P0 and C is ontinuous at t0, then f ◦ C is also ontinuous at t0. Again, it wouldn t be fair to de-

mand more than this if we re only asking f to be ontinuous at P0.

An equivalent de�nition is to say that f is ontinuous at P0 if f is de�ned at P0 and, for every posi-

tive number ǫ, there is some positive number δ suh that, whenever ‖P − P0‖ < δ and f is de�ned at P ,
then |f(P )− f(P0)| < ǫ. This is essentially how it is de�ned in the textbook. However, this ǫ-δ stu� is

rather less fun to work with. (Ultimately, you have to say something like this some time, but I prefer to

say it one, when giving the �rst de�nition in one-variable Calulus, and then never again.)

Any funtion with a formula that is built out of the oordinate variables using only the usual opera-

tions is ontinuous wherever it is de�ned. (To be de�nite, the usual operations are addition, subtration,

multipliation, division, taking opposites, taking reiproals, taking absolute values, raising to powers with

onstant exponents and/or positive bases, extrating roots with onstant indexes and/or positive radi-

ands, logarithms, the six trigonometri operations, and the six inverse trigonometri operations. Some

notable operations not on this list are pieewise de�nitions and powers where the exponent varies and the

base may be zero or negative.)

To prove this, you use the ontinuity of eah omponent of a ontinuous parameterized urve and the

one-variable theorem that any funtion built out of ontinuous funtions using these operations is ontin-

uous. For example, if f and g are ontinuous at P0 and I want to prove that f + g is ontinuous at P0,

onsider a parametrized urve C and a number t0 suh that C(t0) = P0 and C is ontinuous at t0; by de�-

nition, f + g is ontinuous at P0 if, for eah suh C and t0, (f + g) ◦ C is ontinuous at t0. Sine f is on-

tinuous at P0, this means (by de�nition) that f ◦ C is ontinuous at t0; similarly, sine g is ontinuous at

P0, this means that g ◦ C is ontinuous at t0. By a theorem in one-variable Calulus, sine f ◦ C and g ◦ C
are both ontinuous at t0, so is their sum (f ◦ C) + (g ◦ C). But (f ◦ C) + (g ◦ C) is the same funtion as

(f + g) ◦ C, sine they do the same thing to any input t:

(
(f ◦ C) + (g ◦C)

)
(t) = (f ◦ C)(t) + (g ◦ C)(t) = f

(
C(t)

)
+ g

(
C(t)

)
;

(
(f + g) ◦ C

)
(t) = (f + g)

(
C(t)

)
= f

(
C(t)

)
+ g

(
C(t)

)
.

Therefore, (f + g) ◦ C is ontinuous at t0. Sine this argument works for any relevant C and t0, this proves
that f + g is ontinuous at P0, as desired. (Similar arguments work for all of the other operations.)

3.4 Limits

To keep things simple, we ll only look at �nite limits approahing a �nite value; none of our limits will in-

volve in�nity in any role. (Things will beome more ompliated in another way shortly!)

There is a tehniality about limits that s often ignored in one-variable Calulus, whih is that the ex-

pression whose limit you re taking must be de�ned at numbers arbitrarily lose to the number that the

variable is approahing. It s often treated as a big deal that the funtion doesn t have to be de�ned at

that number preisely, whih is ertainly true and important, but it still has to be de�ned near that num-

ber. For example (and assuming that we re only working with real numbers), you an t talk about the lim-

it of

√
t as t → −1, beause t an t get very lose to −1 while

√
t is de�ned. On the other hand, it s �ne

to talk about the limit as t → 0, beause even though

√
t is unde�ned when t < 0, still

√
t is de�ned when

t > 0, whih allows t to get arbitrarily lose to 0. (But on the other other hand, you an t talk about the

limit as t → 0−, beause now this requires t < 0, whih leaves

√
t unde�ned again.)
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A number t0 is a limit point of a set D if it makes sense to talk about a funtion de�ned on D as

having a limit approahing t0, in other words if there exists a funtion whose domain is D (a onstant

funtion will do) that has a limit approahing t0. (The term `limit point' is traditional even in 1 dimen-

sion, even though I would normally all t0 a number rather than a point.) This is equivalent to saying

that there are numbers in D (other than possibly t0 itself) that are arbitrarily lose to t0, in other words

if, given any positive distane δ > 0, there is at least some number t in the set D suh that 0 < |t− t0| < δ.
(But I prefer to think of the de�nition that has no δ or ǫ in it.)

Keeping this tehniality in mind, the limit approahing a point P0 of a funtion f of several vari-

ables (whih in symbols we an write as

lim
P→P0

f(P ),

that is

lim
(x,y)→P0

f(x, y)

in 2 dimensions or

lim
(x,y,z)→P0

f(x, y, z)

in 3 dimensions) is the unique number L (if this exists) suh that, whenever C is a parametrized urve and

t0 is a number, if C(t) = P0 when and only when t = t0, and if C is ontinuous at t0, and if t0 is a limit

point of the domain of f ◦ C, then L is the limit of f ◦ C approahing t0. In other words (ignoring the �ne

print),

lim
P→P0

f(P ) = L

if

lim
t→t0

f
(
C(t)

)
= L

whenever

lim
t→t0

C(t) = P0.

The point of all of that is this: the limit of one of these omposites is basially the limit of the fun-

tion along a partiular urve. If the funtion is unde�ned along the urve, then we don t expet its limit

to exist, and this is what the lause about limit points takes are of. We also don t want to worry about

f(P0) itself, sine f might not be ontinuous at P0, whih is why C(t) is not allowed to be P0 exept when

t = t0. So we re only looking at ertain urves that are appropriate to the problem. Then, in order for the

limit to exist overall, the limit must exist along eah appropriate urve and be the same along all of them.

If for any appropriate urve, there is no limit along that urve, then the limit overall does not ex-

ist. Besides that, if there are two appropriate urves suh that the limits along them are di�erent, then

again the limit does not exist overall. It is in this way that one generally proves that a limit does not ex-

ist, when it doesn t. When the limit does exist, however, then you usually need to �nd a general argument

to show that it does and what it is, beause you an t atually hek every individual urve. Fortunately,

we have a theorem that

lim
P→P0

f(P ) = f(P0)

whenever f is ontinuous at P0 and P0 is a limit point of dom f , as in one-variable Calulus.

One often talks about limits with restritions on the manner of approahing the point. For example,

instead of saying (x, y) approahes (2, 3), we might say that (x, y) approahes (2, 3) while x 6= y. (An ana-

logue in one-variable Calulus is, for example, t → 0−; that is, t → 0 while t < 0.) Tehnially, this is han-

dled by modifying the funtion so that it is de�ned only when the given restrition is met (so in this ex-

ample, the funtion would be unde�ned when x = y). That is,

lim
(x,y)→(2,3)

x 6=y

f(x, y) = lim
(x,y)→(2,3)

(f(x, y) for x 6= y),

where by `f(x, y) for x 6= y' I mean f(x, y) if x 6= y but something unde�ned if x = y.
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3.5 Di�erentiability

The way that di�erentiability �ts in with omposition of funtions is the hain rule

(f ◦ g)′(t) = f ′
(
g(t)

)
g′(t).

Following the general priniple, we replae g with a parametrized urve C, and the values of the deriva-

tives of this (replaing g′(t)) are vetors. However, the omposite is an ordinary funtion, so the derivative

of f should multiply by a vetor to get a salar. The general way to do this is to multiply a vetor by a

vetor with the dot produt, so the derivative of a funtion of several variables should also be a vetor.

(Sine we want this onept to make sense even when lengths and angles don t apply, this vetor is going

to have to be a row vetor; see Setion 1.8 on pages 11&12.) There are atually several sorts of derivatives

in higher dimensions, and we ll ome bak to this subjet in Chapter 4; but the one whih is a vetor will

provide the de�nition of di�erentiability.

So, we say that the funtion f is di�erentiable at some point P0 if there exists a (row) vetor v suh

that, whenever C is a parametrized urve and t0 is a number suh that C(t0) = P0 and C is di�erentiable

at t0, then f ◦ C is also di�erentiable at t0 and furthermore (f ◦ C)
′
(t0) = v · C′(t0). If f is di�erentiable

at every point P0 in its domain, then f is simply di�erentiable.

This vetor v is alled the gradient of f at P0 and may be written as ∇f(P0) (although f ′(P0) would
make a lot of sense), so the basi rule is

(f ◦ C)′(t) = ∇f
(
C(t)

)
· C′(t).

3.6 Higher di�erentiability

Where a funtion f is di�erentiable, the omponents of its gradients de�ne some more funtions, alled

the partial derivatives of f . (We will do more with these partial derivatives in Chapter 4.) Wherever

the partial derivatives are themselves ontinuous, the original funtion is ontinuously di�erentiable.

Where the partial derivatives are themselves di�erentiable, the original funtion is twie di�erentiable.

Where the partial derivatives are ontinuously di�erentiable, the original funtion is twie ontinuously

di�erentiable. Et et et. (As in one-variable Calulus, there is a theorem that a di�erentiable funtion

must be ontinuous, so a twie-di�erentiable funtion must be ontinuously di�erentiable, et.)

Where this goes on forever, the funtion is in�nitely di�erentiable: it is di�erentiable, its partial

derivatives are di�erentiable, their partial derivatives are di�erentiable, et. Any funtion built out of the

usual operations is in�nitely di�erentiable exept at ertain exeptional plaes where a derivative fails to

exist, suh as when taking the absolute value or square root of zero. But to prove this, it s best to look at

how to alulate the derivatives, whih I ll get to next.
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4 Di�erentiation and di�erential forms

Di�erential forms are, broadly speaking, expressions that may have di�erentials in them. They have many

uses in modern siene and engineering, even though they are not traditionally overed expliitly in math

lass. They are overed somewhat, however, and they are there whenever you di�erentiate or integrate,

even if you don t reognize them. They are espeially prominent in multivariable Calulus, and I want to

bring them to your attention; you ll �nd that symbols that otherwise seem meaningless or merely mnemon-

i an be understood literally (sometimes with slight hanges) as di�erential forms.

4.1 Examples

The most basi examples of di�erential forms are di�erentials suh as dx and dy. In general, if u is any

quantity that might hange, then du is intended to be a related quantity whose value is an in�nitely small

hange in u, or rather the amount by whih the value of u hanges when an in�nitely small (or arbitrarily

small) hange is made. (I will make this preise in Setion 4.6 on pages 39&40.)

Besides the di�erentials themselves, di�erential forms an be onstruted by applying arithmeti oper-

ations, so dx+ dy, dxdy, and
√
dx are all di�erential forms. In all of these expressions, we adopt an order

of operations in whih the di�erential operator d is applied before any arithmeti operator; for example,

dx2
means (dx)

2
, not d(x2) (whih is du when u = x2

and turns out to equal 2xdx). Additionally, we an
inlude ordinary quantities in these expressions, so x+ dx, 3 dx+ x2 dy + ey dz, and x ln (y/dz) are also
di�erential forms. We an also use di�erentials of di�erentials, suh as d2x (whih means d(dx), the dif-
ferential of dx), although we won t need suh higher-order di�erentials in this ourse. Besides all of this,

any ordinary expression ounts as a di�erential form in a degenerate way; thus, x, y2, and 2xy3 are also

di�erential forms (of order zero).

Some di�erential forms are more useful than others. Of those listed above, besides the di�erentials

themselves and the ones of order 0 (the ordinary quantities with no di�erentials at all), the ones most

likely to appear in a real problem are dx+ dy and 3 dx+ x2 dy + ey dz. These onsist of any number of

terms, eah of whih is the produt of an ordinary quantity (possibly the onstant 1) and the di�erential

of an ordinary quantity. Di�erential forms with this property are most ommonly found in pratie. We

will use other di�erential forms, suh as 3x |dy| and
√
dx2 + dy2; however, you might be able to see how

even these forms are di�erential of degree 1 in a sense similar to the degree of a polynomial.

All of the examples so far are di�erential forms of rank 1; there are also di�erential forms of higher

rank, suh as dx ∧ dy, whih are written using a new operation, the wedge produt. We will not use these

until later, starting in Chapter 6; this hapter note is only about di�erential forms of rank 1, or 1-forms

for short. (Ordinary quantities ount as rank 0, or 0-forms.)

4.2 Evaluating di�erential forms

In this lass, we generally assume that any ordinary quantity (that is any 0-form) is a funtion of 2 or 3
ordinary variables, P = (x, y) or P = (x, y, z). Thus, we evaluate 0-forms by speifying spei� values for

the variables that omprise P . For example, to evaluate u = x2 + xy when x = 2 and y = 3, we may write

u|P=(2,3) = (x2 + xy)|(x,y)=(2,3) = (2)2 + (2)(3) = 10.

To evaluate a di�erential 1-form, however, we need not only a point (a value of P ) but also a vetor

(a value of dP = 〈dx, dy〉 or dP = 〈dx, dy, dz〉). So for example, to evaluate α = 3dx+ x2 dy + ey dz when

x = 2, y = 3, z = 4, dx = 0.05, dy = −0.01, and dz = 0, we may write

α|P=(2,3,4),
dP=〈0.05,−0.01,0〉

= (3 dx+ x2 dy + ey dz)| (x,y,z)=(2,3,4),
〈dx,dy,dz〉=〈0.05,−0.01,0〉

= 3(0.05) + (2)
2
(−0.01) + e(3)(0) = 0.11.

(Di�erential forms are often denoted with Greek letters suh as `α', although they don t have to be.) We

say that α has been evaluated at the point P = (2, 3, 4) along the vetor dP = 〈0.05,−0.01, 0〉. (The om-

ponents of dP don t need to have small absolute values as in this example, sine the de�nition makes sense
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in any ase, but in appliations that s usually what matters; after all, dP is supposed to be a small hange

in position.)

(To evaluate higher-order di�erential forms (those that involve higher-order di�erentials), we need to

speify additional vetors suh as d2P = 〈d2x, d2y, d2z〉, et. However, we won t need that level of general-

ity in this ourse.)

4.3 Di�erential forms as vetors

A di�erential form α = M dx+N dy +O dz may be viewed as a dot produt α = 〈M,N,O〉 · 〈dx, dy, dz〉 =
V · dP . For example, if α = 3dx+ x2 dy + ey dz, then α = 〈3, x2, ey〉 · dP ; onversely, if V = 〈3, x2, ey〉,
then

V · dP = 〈3, x2, ey〉 · 〈dx, dy, dz〉 = 3dx+ x2 dy + ey dz.

(We an reover V from α formally by evaluating α when dP is 〈i, j〉 or 〈i, j,k〉, but there s probably no

need to think about that expliitly.)

Even in irumstanes where it makes no sense to interpret a hange in the values of (x, y, z) as a ve-

tor in the geometri sense (with length and diretion), in whih ase dot produts involving them general-

ly have no meaning, it is traditional to write di�erential forms in this way and to fous on V rather than

on α as the objet of study. In this ase, we need to think of V as a row vetor. Regardless of whether V

has geometri signi�ane as a vetor, it an be helpful to visualize it as one.

When alulations with a row vetor need to be performed, ultimately it is the di�erential form α =
V · dP that matters. It s more ommon to see V · dr, where as usual the vetor r = P −O (where O is

(0, 0) or (0, 0, 0)) satis�es dr = dP . Sometimes V · dr is even regarded as merely a mnemoni notation (es-

peially in the ontext of de�ning integrals suh as those in Setion 15.2 of the textbook), but it an be

taken literally, just as dy/dx (whih is also sometimes regarded as merely mnemoni) an be taken literal-

ly as the result of a division of di�erentials. In any ase, people do write V · dr (even in the textbook), so

it an be nie to know what it means!

In the textbook, they also sometimes write dr = Tds, where ds (whih is not really the di�erential

of anything in spae as a whole) is the magnitude ds = |dr| and T = d̂r, the unit vetor in the diretion

of dr. This is sometimes useful when thinking about things geometrially, but it s not neessary for pur-

poses of alulation. In 2 dimensions, we an also take ross produts (using the rule 〈a, b〉 × 〈c, d〉 = ad−
bc); for example, if V = 〈3, x2〉, then

V × dr = 〈3, x2〉 × 〈dx, dy〉 = 3dy − x2 dx.

(This requires that hanges in x and y make sense as having a geometri length even when V is regard-

ed as merely a row vetor, so it doesn t ome up as often.) If you use ×〈c, d〉 = 〈d,−c〉, so that u× v =
u · ×v, then you an write V × dr as V · ×dr; the book sometimes writes this as V · n ds, where ds =

|×dr| = |dr| again, and now n =‘×dr = ×T is the diretion perpendiular and lokwise from dr. Again,
sometimes n and ds are useful when thinking about the geometry, but you don t need them for doing al-

ulations.

This is all espeially ommon when V is the output of a vetor �eld, that is a vetor-valued funtion

of several variables. For example, if F(x, y) = 〈3, x2〉, then

F(x, y) · dr = 〈3, x2〉 · 〈dx, dy〉 = 3dx+ x2 dy,

and

F(x, y)× dr = 〈3, x2〉 × 〈dx, dy〉 = 3dy − x2 dx.

So in Setion 15.2 of the textbook, whih is really about integrating di�erential 1-forms along urves, the

book spends most of its time talking about integrating vetor �elds along urves (and oasionally in-

tegrating them aross urves in 2 dimensions). What s really going on is that you integrate the vetor

�eld F by integrating one of the two di�erential forms above (usually the �rst one). But even if you re not

doing integrals (whih we will not be doing for a while), the relationship between vetor �elds and di�er-

ential forms is helpful for geometri visualization.
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4.4 Di�erentials and the rules of di�erentiation

In one-variable Calulus, one sometimes sees the Chain Rule expressed as

dy

dx
=

dy

du
· du
dx

,

but the Chain Rule is a nontrivial fat that annot be proved by simply anelling fators. I prefer to

state the Chain Rule as

d
(
f(u)

)
= f ′(u) du.

the point is that the same funtion f ′
appears regardless of whih argument u we use.

Even this is more abstrat than how the Chain Rule is applied. For example, suppose that you have

disovered (say from the de�nition as a limit) that the derivative of f(x) = sinx is f ′(x) = cosx. Sine

f ′(x) may be de�ned as

d
(
f(x)

)

dx
, this derivative an be expressed in di�erential form without even both-

ering to name the funtions involved:

d(sinx) = cosxdx.

One you know this, you know something even more general:

d(sinu) = cosu du

for any other di�erentiable quantity u; the Chain Rule is the power to derive this equation from the previ-

ous one. Thus, using u = x2
(to ontinue the example),

d
(
sin (x2)

)
= cos (x2) d(x2) = cos (x2)(2xdx) = 2x cos (x2) dx.

You may now divide both sides of this equation by dx if you wish, but the basi alulation involves only

rules for di�erentials.

For the reord, here are the rules for di�erentiation that you should already know, expressed using

di�erentials:

• The Constant Rule: d(K) = 0 if K is onstant.

• The Sum Rule: d(u+ v) = du+ dv.
• The Translate Rule: d(u+ C) = du if C is onstant.

• The Di�erene Rule: d(u− v) = du− dv.
• The Produt Rule: d(uv) = v du + u dv.
• The Multiple Rule: d(ku) = k du if k is onstant.

• The Quotient Rule: d

Å
u

v

ã
=

v du − u dv

v2
.

• The Power Rule: d(un) = nun−1 du if n is onstant.

• The Exponentiation Rule: d(expu) = expu du (where expu means eu).

• The Logarithm Rule: d(lnu) =
du

u
.

• The Sine Rule: d(sinu) = cosu du.
• The Cosine Rule: d(cosu) = − sinu du.
• The Tangent Rule: d(tanu) = sec2 u du.
• The Cotangent Rule: d(cotu) = − csc2 u du.
• The Seant Rule: d(secu) = tanu secu du.
• The Coseant Rule: d(cscu) = − cotu cscu du.

• The Arsine Rule: d(asinu) =
du√
1− u2

(where asinu means sin−1 u).

• The Arosine Rule: d(acosu) = − du√
1− u2

.
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• The Artangent Rule: d(atanu) =
du

u2 + 1
.

• The Arotangent Rule: d(acotu) = − du

u2 + 1
.

• The Arseant Rule: d(asecu) =
du

|u|
√
u2 − 1

.

• The Aroseant Rule: d(acscu) = − du

|u|
√
u2 − 1

.

• The Chain Rule: d(f(u)) = f ′(u) du if f is a funtion of one variable that s di�erentiable at u.

• The First Fundamental Theorem of Calulus: d
Äw v

t=u
f(t) dt

ä
= f(v) dv − f(u) du if f is a funtion of

one variable that s ontinuous between u and v.

(The last one might not be familiar to you in suh a general form, but it an be handy.)

Notie that every one of the rules above turns the di�erential on the left into a sum of terms (possibly

only one term, or none in the ase of the Constant Rule), eah of whih is an ordinary expression multi-

plied by a di�erential (or something algebraially equivalent to this). This is a kind of di�erential form;

more preisely, these are linear di�erential 1-forms (whih are also alled exterior di�erential 1-forms).

Here is an example of how to use the rules, step by step, to �nd a di�erential. Spei�ally, I ll �nd the

di�erential of x2y + sin (z2). (In one-variable Calulus, you might onsider this if x, y, and z all happen to

be funtions of some other variable t; but in multivariable Calulus, the same alulation will apply even

when the variables x, y, and z are all independent.)

d
(
x2y + sin (z2)

)
= d(x2y) + d

(
sin (z2)

)

= y d(x2) + x2 dy + cos (z2) d(z2)

= y(2x2−1 dx) + x2 dy + cos (z2)(2z2−1 dz)

= 2xy dx+ x2 dy + 2z cos (z2) dz.

Here I ve used, in turn, the sum rule, the produt and sine rules (one in one term and the other in the oth-

er term), the power rule (in two plaes), and �nally some algebra to simplify. Of ourse, you an usually

do this muh faster; with pratie, you an jump immediately to the seond-to-last line by applying the

next rule whenever one rule results in a di�erential; then you only need one more step to simplify it alge-

braially. Often you an even do some of the algebra in your head immediately (like simplifying x2−1
to x,

so that d(x2) immediately beomes 2xdx).

4.5 Partial derivatives

If f(x, y, z) (for example) an be expressed using the usual operations (and possibly even if it annot),

then its di�erential will ome out as

d
(
f(x, y, z)

)
= f1(x, y, z) dx+ f2(x, y, z) dy + f3(x, y, z) dz

for some funtions f1, f2, and f3. These funtions are the partial derivatives of f . Sine subsripts an
be used for many things, a better notation for f1, f2, and f3 is D1f , D2f , and D3f (respetively); om-

pare the notation Df for f ′
that is sometimes used in single-variable Calulus. For example, if f(x, y, z) =

x2y + sin (z2), then

d
(
f(x, y, z)

)
= d

(
x2y + sin (z2)

)
= 2xy dx+ x2 dy + 2z cos (z2) dz

(as I alluated earlier), so

D1f(x, y, z) = 2xy,

D2f(x, y, z) = x2
, and

D3f(x, y, z) = 2z cos (z2).
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If instead we write u for f(x, y, z), then we have a di�erent notation for the oe�ients on the di�er-

entials:

du =

Å
∂u

∂x

ã

y,z

dx+

Å
∂u

∂y

ã

x,z

dy +

Å
∂u

∂z

ã

x,y

dz.

(The symbol `∂' is a variation on the lowerase Greek Delta, `δ'. It is usually not pronouned diretly; in-

stead, you read the entire expression as desribed below.) So for example, if u = x2y + sin (z2), then

du = d
(
x2y + sin (z2)

)
= 2xy dx+ x2 dy + 2z cos (z2) dz

again, so Å
∂u

∂x

ã

y,z

= 2xy,

Å
∂u

∂y

ã

x,z

= x2
, and

Å
∂u

∂z

ã

x,y

= 2z cos (z2).

This

Å
∂u

∂x

ã

y,z

is the partial derivative of u with respet to x, �xing y and z, whih tells you how muh

u hanges relative to the hange in x as long as y and z remain the same. All of the information in this

notation is neessary to avoid ambiguity, but in pratie people usually write simply

∂u

∂x
, all this simply

the partial derivative of u with respet to x, and expet you to guess from ontext what other variables

are remaining �xed.

Of ourse, people also mix notation for f with notation for u, writing Dxf , fx,
∂f

∂x
, and so on, as well

as ux, u1, D1u, and so on. Tehnially, notation with numbers makes sense only when applied to the name

of a funtion, beause the arguments of that funtion ome in a spei� order; while notation referring to

the variables used does not make sense when applied to the name of a funtion, sine one ould use any

variables as the arguments of the funtion (although it does make sense when applied to an expression

suh as f(x, y, z), in whih these variables have been spei�ed). In pratie, however, people usually use

the variables x, y, z in that order; then there is no onfusion.

4.6 De�ning di�erentials

Reall from Setion 3.5 on page 34 that the funtion f is di�erentiable at the point P0 if there exists

a row vetor ∇f(P0) suh that, for every di�erentiable parametrized urve C and real number t0, if C(t0)
exists and equals P0, then the omposite funtion f ◦ C is di�erentiable at t0 and furthermore (f ◦ C)′(t0) =
∇f(P0) · C′(t0). This makes ∇f a vetor �eld, alled the gradient of f , that is de�ned wherever f is dif-

ferentiable. (The symbol `∇' is variously pronouned `Atled', `Nabla', and `Del'; people also write grad f
for ∇f .)

If u = f(P ) and f is di�erentiable, then we write

du = ∇f(P ) · dP = ∇f(P ) · dr,

where r is P −O (P minus the origin), as usual. If you think of ∇f as a derivative of f , then this is sim-

ply taking the Chain Rule as a de�nition. There are two good things about this de�nition of du. First of
all, all of the usual rules of di�erentiation are atually true of it; beause the de�nition ultimately refers to

ordinary funtions, we an prove eah rule in the list on pages 37&38 by using the orresponding result for

ordinary funtions. The other good thing about this de�nition is that when we evaluate a di�erential at a

given point and vetor, then the result is one of the derivatives (f ◦ C)′(t0) that appear in the de�nition of

di�erentiability.
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Spei�ally, �xing a point P0 and a vetor v0, let C(t) = P0 + tv0; then C is a di�erentiable urve

with C(0) = P0 and C′(0) = v0, so

du|P=P0,
dP=v0

= ∇f(P0) · v0 = ∇f
(
C(0)

)
· C′(0) = (f ◦ C)

′
(0)

when u = f(P ). If v0 happens to be a unit vetor (a diretion), then ∇f(P0) · v0 is alled the diretional

derivative of f at P0 in the diretion of v0. In general, the diretional derivative in the diretion of v0 is

∇f(P0) · v̂0 (where v̂ = v/|v| is the unit vetor in the diretion of v); however, be areful, beause some

people use the term `diretional derivative' for ∇f(P0) · v0 in the general ase (sine it s important but

there is no standard name for it). In partiular, the diretional derivatives parallel to the oordinate axes

�that is ∇f(P0) · i, ∇f(P0) · j, and (in 3 dimensions) ∇f(P0) · k� are simply the partial derivatives of f
at P0.

Beause d
(
f(P )

)
= ∇f(P ) · dP = ∇f(P ) · dr, the value of the gradient may also be written as

∇f(P ) = d
(
f(P )

)/
dP = d

(
f(P )

)/
dr (although we annot de�ne division by a vetor in general). An

even simpler notation for ∇f(P ) would be f ′(P ), but this is traditionally not used, beause there are many

notions of derivative of f (suh as the diretional derivatives and the partial derivatives); even though the

gradient is the most general derivative, it is ommonly thought that f ′
would be ambiguous in this on-

text. (When we start di�erentiating vetor �elds in Chapter 8, there will be another reason that it s on-

venient to have a symbol ∇ that we an manipulate more thoroughly than the tiny tik mark on f ′
.)

4.7 Gradients

If f is a funtion of (say) 3 variables, then the de�nition of di�erential above states that

d
(
f(x, y, z)

)
= ∇f(x, y, z) · d(x, y, z) = ∇f(x, y, z) · 〈dx, dy, dz〉;

meanwhile, the de�nition of partial derivatives states that

d
(
f(x, y, z)

)
= D1f(x, y, z) dx+D2f(x, y, z) dy +D3f(x, y, z) dz

= 〈D1f(x, y, z),D2f(x, y, z),D3f(x, y, z)〉 · 〈dx, dy, dz〉.

In other words,

∇f(x, y, z) = 〈D1f(x, y, z),D2f(x, y, z),D3f(x, y, z)〉 =
Æ
∂
(
f(x, y, z)

)

∂x
,
∂
(
f(x, y, z)

)

∂y
,
∂
(
f(x, y, z)

)

∂z

∏
.

Put more simply,

∇f = 〈D1f,D2f,D3f〉,

or even

∇ = 〈D1,D2,D3〉.

The gradient has the same information as the di�erential, and the partial derivatives are the ompo-

nents of the gradient, so any one of these (the gradient, the partial derivatives, or the di�erential) may

be used to solve any problem. The di�erential is usually the most useful for diret alulation, whih is

one reason why I use it heavily. However, if we have a geometri notion of length available to allow us to

think of row vetors (suh as the gradient) as the same as olumn vetors (the usual ones, going between

points), then the gradient is easier to visualize.
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For referene, here are a bunh of relationships between di�erentials, partial derivatives, and gradi-

ents, assuming that u = f(x, y, z):

du =

Å
∂u

∂x

ã

y,z

dx+

Å
∂u

∂y

ã

x,z

dy +

Å
∂u

∂z

ã

x,y

dz;

du = D1f(x, y, z) dx+D2f(x, y, z) dy +D3f(x, y, z) dz;

D1f(x, y, z) =

Å
∂u

∂x

ã

y,z

, D2f(x, y, z) =

Å
∂u

∂y

ã

x,z

, D3f(x, y, z) =

Å
∂u

∂z

ã

x,y

;

∇f(x, y, z) = 〈D1f(x, y, z),D2f(x, y, z),D3f(x, y, z)〉;

∇f(x, y, z) =

ÆÅ
∂u

∂x

ã

y,z

,

Å
∂u

∂y

ã

x,z

,

Å
∂u

∂z

ã

x,y

∏
;

du = ∇f(x, y, z) · 〈dx, dy, dz〉;
du|〈dx,dy,dz〉=v

= ∇f(x, y, z) · v.

4.8 Jaobian matries

If you have m funtions of n variables eah, or equivalently a funtion that takes a point in n dimensions

as input and returns a point in m dimensions as output, then you an put their partial derivatives in-

to an array with m rows and n olumns, that is an m-by-n matrix (see Setion 1.13). For example, if

you have 2 funtions of 3 variables eah, say u = f(x, y, z) and v = g(x, y, z) (or in other words, (u, v) =
(f, g)(x, y, z)), then the partial derivatives �t into a 2-by-3 matrix

ï
∂u/∂x ∂u/∂y ∂u/∂z
∂v/∂x ∂v/∂y ∂v/∂z

ò
;

we may all this matrix d(u, v)/d(x, y, z). You an also think of this as the result of applying the matrix

of funtions ï
D1f D2f D3f
D1g D2g D3g

ò
,

whih may be alled D(f, g), to the point (x, y, z). That is, we have d(u, v)/d(x, y, z) = D(f, g)(x, y, z). Or
writing P for (x, y, z), Q for (u, v), and F for (f, g), so that Q = F (P ), we have dQ/dP = DF (P ), where
DF is the same matrix of funtions as before. (You ould justi�ably write DF (P ) as F ′(P ), but this is not
usually done in multiple dimensions.) In partiular:

• If you have an ordinary funtion y = f(x), you an think of this as a group of only 1 funtion of only

1 variable eah, so that d(y)/d(x) = D(f)(x) is a 1-by-1 matrix, onsisting of a single entry, whih is

the usual derivative dy/dx = f ′(x). That is, d(y)/d(x) = [ dy/dx ], and D(f) = [Df ] = [ f ′ ].
• If you have a parametrized urve in 3 dimensions, say P = (x, y, z) =

(
f(t), g(t), h(t)

)
, then this is a

group of 3 funtions of 1 variable eah, so that d(x, y, z)/d(t) = D(f, g, h)(t) is a 3-by-1 matrix, on-

sisting of a single olumn with 3 entries, whih are the omponents of the veloity vetor dP/dt =

〈f ′(t), g′(t), h′(t)〉. That is, d(x, y, z)/d(t) =



dx/dt
dy/dt
dz/dt



. It is for this reason that ordinary vetors that

represent hange of a point (suh as veloity vetors) are sometimes alled olumn vetors.

• If you have a funtion of 3 variables, say u = F (x, y, z), then you an think of this as a group of 1 fun-

tion of 3 variables eah, so that d(u)/d(x, y, z) = D(F )(x, y, z) is a 1-by-3 matrix, onsisting of a sin-

gle row with 3 entries, whih are the omponents of the gradient vetor 〈∂u/∂x, ∂u/∂y, ∂u/∂z〉 =
∇F (x, y, z). That is, d(u)/d(x, y, z) = [ ∂u/∂x ∂u/∂y ∂u/∂z ], and D(F ) = [D1f D2f D3F ].
For this reason, vetors that represent hange with respet to a point, suh as gradient vetors, are

sometimes alled row vetors.

In this way, Jaobian matries inlude all of the kinds of derivatives that we have seen before.
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Every form of the Chain Rule in Setion 13.4 of the textbook an be expressed using matrix multipli-

ation. (See Setion 1.13 from the full set of notes again.) Reall that you an multiply an m-by-n matrix

and an n-by-o matrix to get an m-by-o matrix. Then if a point R in m dimensions is a funtion of a point

Q in n dimensions, whih is itself a funtion of a point P in o dimensions, then you an multiply the m-

by-n matrix dR/dQ and the n-by-o matrix dQ/dP to obtain the m-by-p matrix dR/dP .
In partiular, if you have both a parametrized urve (x, y, z) = (f(t), g(t), h(t)) and a multivariable

funtion u = F (x, y, z), then omposition makes u an ordinary funtion of t; spei�ally, u = F
(
f(t), g(t), h(t)

)
=(

F ◦ (f, g, h)
)
(t). Reall the de�ning property of the gradient from page 34:

(
F ◦ (f, g, h)

)′
(t) = ∇F (f(t), g(t), h(t)) ·

〈f ′(t), g′(t), h′(t)〉; or du/dt = 〈∂u/∂x, ∂u/∂y, ∂u/∂z〉 · 〈dx/dt, dy/dt, dz/dt〉. The same thing an be ex-

pressed using matrix multipliation as

d(u)

d(t)
=

d(u)

d(x, y, z)

d(x, y, z)

d(t)
,

beause a matrix row is mutliplied by a matrix olumn using the same method as the dot produt.

Even the relationship between derivatives and di�erentials may be expressed using matries. In gener-

al, if Q = F (P ), then the olumn matrix dQ may be obtained by mutiplying the matrix dQ/dP = DF (P )
by the olumn matrix dP . For example, if (u, v) = (f, g)(x, y, z), then the 2-by-1 matrix d(u, v) (a ol-

umn vetor in 2 dimensions being thought of as a matrix) is the result of multiplying the 2-by-3 matrix

d(u, v)/d(x, y, z) by the 3-by-1 matrix d(x, y, z) (a olumn vetor in 3 dimensions being thought of as a

matrix). More expliitly,

ï
du
dv

ò
=

ï
∂u/∂x ∂u/∂y ∂u/∂z
∂v/∂x ∂v/∂y ∂v/∂z

ò

dx
dy
dz



.

If you re only interested in one di�erential at a time, then you really don t need any of this, or any

form of the Chain Rule. For example, in the situation in the previous paragraph, if you only want to know

du, then you an reason that

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz,

whih we ve seen before. And then if x, y, and z are funtions of t, then you an ontinue:

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz =

∂u

∂x

dx

dt
dt+

∂u

∂y

dy

dt
dt+

∂u

∂z

dz

dt
dt.

Therefore,

du

dt
=

∂u

∂x

dx

dt
+

∂u

∂y

dy

dt
+

∂u

∂z

dz

dt
.

Every appliation of the Chain Rule in Setion 13.4 of the textbook an also be done in this way, using no

fany rules at all. The purpose of the Jaobian matries (and the gradient vetors and veloity vetors, for

that matter) is largely simply to organize the partial derivatives into onvenient tables.

4.9 Tangents and normal lines

If f is a funtion of 2 (or 3) variables and P0 is a point in 2 (or 3) dimensions, then the level urve (or sur-

fae) of f through P0 is given by the equation f(P ) = f(P0), where P = (x, y) (or (x, y, z), as usual). (The
funtion f and the point P0 have already been �xed, but the point P is allowed to vary, so this is an equa-

tion in our 2 (or 3) variables, as it should be.) If f is di�erentiable at P0 and the gradient of f is nonzero

at P0, then this level urve (or surfae) has a tangent line (or plane) through P0, given by the equation

∇f(P0) · (P − P0) = 0. Finally, perpendiular to this tangent line (or plane), there is a normal line (al-

ways a line!) through P0, with parametrization P = P0 + t∇f(P0) in the parameter t.
Writing u for f(P ), the equation for the level urve (or surfae) is u = u|P=P0

. Writing ∆u for

f(P +∆P )− f(P ), a quantity that depends on both a point P and a vetor ∆P , another equation for
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the level urve (or surfae) is ∆u|P=P0,
∆P=P−P0

= 0. That is, you take the expression for ∆u, whih says how

muh u hanges between two points, put P0 in for the starting point P , and then put P − P0 in for the

di�erene ∆P between the two points. Sine the value of u shouldn t hange on the level urve (or sur-

fae), this di�erene ∆u should be zero. (Notie that the meaning of P hanges over the ourse of this

substitution; originally it refers to the starting point, whih we set to P0, but afterwards it refers to anoth-

er point on the level urve (or surfae), so we set the displaement ∆P between the two points to P − P0.)

The tangent line (or plane) is given by a very similar equation, exept that now we look at how the

urve (or surfae) is hanging in�nitesimally at P0 and extend this out to arbitrary distanes. Thus, the

equation ∆u = 0 for the level urve (or surfae) beomes du = 0 for the tangent line (or plane). Howev-

er, we re still looking for the values of u in the same plae, so the full equation is du|P=P0,
dP=P−P0

= 0. If you

follow the formula for evaluating a di�erential on page 40 in Setion 4.6, then you ll see that this means

preisely ∇f(P0) · (P − P0) = 0.
For example, if u = xy and P0 = (2, 3), then the level urve is xy = (2)(3), or simply xy = 6. (Re-

plae x with 2 and y with 3 on the right-hand side.) Alternatively, ∆u = (x+∆x)(y +∆y)− xy = y∆x+
x∆y +∆x∆y, so the level urve is (3)(x− 2) + (2)(y − 3) + (x− 2)(y − 3) = 0. (Replae x with 2, y
with 3, ∆x with x− 2, and ∆y with y − 3.) This also simpli�es to xy = 6.

That was obviously more work than neessary for the level urve, but now apply the same tehnique

to the di�erential to get the tangent line: du = y dx+ xdy, so the tangent line is (3)(x− 2) + (2)(y − 3) =
0. (Replae x with 2, y with 3, dx with x− 2, and dy with y − 3.) This simpli�es to 3x+ 2y = 12, and
now we learnt something that we didn t know before.

Beause the normal line depends on the geometri notion of angle (to tell you what s perpendiular

to what), this an t be done as slikly using only di�erentials. Now we really do want to think of the gra-

dient vetor. All the same, sine this an be read o� of the di�erential so easily, you an still start with

du = y dx+ xdy. First, replae only x with 2 and y with 3 to get 3 dx+ 2dy, then read o� the gradi-

ent vetor 〈3, 2〉. Sine we started at the point (2, 3), the parametri equation is P = (2, 3) + t〈3, 2〉, or
(x, y) = (3t+ 2, 2t+ 3) in more detail.

None of this (beyond the level urve (or surfae) itself) works right if the gradient ∇f(P0) is zero
or unde�ned. If the gradient is unde�ned, then of ourse we an t say anything using it; but if the gradient

is zero, then these equations say that every point belongs to the tangent line (or plane) and only the point

P0 belongs to the normal line. Of ourse, that would mean that they re not lines (or a plane and a line)

at all! When the gradient is zero, the truth may be that there is no tangent or that there is a tangent but

it really does onsist of everything, or there may be an honest tangent line (or plane) after all; but in any

ase, these formulas won t help you know that!

4.10 Taylor

′
s Theorem in several variables

One version of Taylor s Theorem in one-variable Calulus is

f(a+ h) =
k∑

n=0

1

n!
f (n)(a)hn +

1

k!

w 1

t=0
(1− t)

k
f (k+1)(a+ th)hk+1 dt.

To be more expliit, here is the statement for the �rst few values of k:

f(a+ h) = f(a) +
w 1

t=0
f ′(a+ th)h dt

= f(a) + f ′(a)h+
w 1

t=0
(1− t)f ′′(a+ th)h2 dt

= f(a) + f ′(a)h+
1

2
f ′′(a)h2 +

1

2

w 1

t=0
(1− t)2f ′′′(a+ th)h3 dt

.

.

.
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Here, a and h are real numbers, k is a whole number, and f is a funtion that is ontinuously di�eren-

tiable k + 1 times (at least) between a and a+ h. These statements may be proved by repeated applia-

tion of integration by parts (and the Fundamental Theorem of Calulus, whih is why f (k+1)
must not

only exist but also be ontinuous).

To write down the general statement in several variables requires more advaned notation than we use

in this lass, but I will write down the �rst few statements when f is a funtion of 2 variables:

f(a+ h, b+ i) = f(a, b) +
w 1

t=0
D1f(a+ th, b+ ti)h dt+

w 1

t=0
D2f(a+ th, b+ ti)i dt

= f(a, b) + D1f(a, b)h+D2f(a, b)i

+
w 1

t=0
(1− t)D1,1f(a+ th, b+ ti)h2 dt+

w 1

t=0
(1− t)D1,2f(a+ th, b+ ti)hi dt

+
w 1

t=0
(1− t)D2,1f(a+ th, b+ ti)ih dt+

w 1

t=0
(1− t)D2,2f(a+ th, b+ ti)i2 dt

= f(a, b) + D1f(a, b)h+D2f(a, b)i

+
1

2
D1,1f(a, b)h

2 +
1

2
D1,2f(a, b)hi+

1

2
D2,1f(a, b)ih+

1

2
D2,2f(a, b)i

2

+
1

2

w 1

t=0
(1− t)

2
D1,1,1f(a+ th, b+ ti)h3 dt+

1

2

w 1

t=0
(1− t)

2
D1,1,2f(a+ th, b+ ti)h2i dt

+
1

2

w 1

t=0
(1− t)

2
D1,2,1f(a+ th, b+ ti)hih dt+

1

2

w 1

t=0
(1− t)

2
D1,2,2f(a+ th, b+ ti)hi2 dt

+
1

2

w 1

t=0
(1− t)2D2,1,1f(a+ th, b+ ti)ih2 dt+

1

2

w 1

t=0
(1− t)2D2,1,2f(a+ th, b+ ti)ihi dt

+
1

2

w 1

t=0
(1− t)

2
D2,2,1f(a+ th, b+ ti)i2h dt+

1

2

w 1

t=0
(1− t)

2
D2,2,2f(a+ th, b+ ti)i3 dt

.

.

.

These may again be proved by using integration by parts. In fat, by doing the integration by parts in

slightly di�erent ways, we an rearrange the order of the mixed partial derivatives (suh as D1,2f and

D2,1f); this both proves the theorem that the mixed partial derivatives are the same in either order (when

they are ontinuous) but also allows us to simplify the formulas slightly:

f(a+ h, b+ i) = f(a, b) +
w 1

t=0
D1f(a+ th, b+ ti)h dt+

w 1

t=0
D2f(a+ th, b+ ti)i dt

= f(a, b) + D1f(a, b)h+D2f(a, b)i+
w 1

t=0
(1− t)D1,1f(a+ th, b+ ti)h2 dt

+ 2
w 1

t=0
(1− t)D1,2f(a+ th, b+ ti)hi dt+

w 1

t=0
(1− t)D2,2f(a+ th, b+ ti)i2 dt

= f(a, b) + D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2

+
1

2

w 1

t=0
(1− t)

2
D1,1,1f(a+ th, b+ ti)h3 dt+

3

2

w 1

t=0
(1− t)

2
D1,1,2f(a+ th, b+ ti)h2i dt

+
3

2

w 1

t=0
(1− t)2D1,2,2f(a+ th, b+ ti)hi2 dt+

1

2

w 1

t=0
(1− t)2D2,2,2f(a+ th, b+ ti)i3 dt

.

.

.

However, in my opinion, the pattern is not so lear when it s put this way.

For purposes of approximation, it s useless to atually work out the integrals that appear here; if you

knew the exat value of the derivatives of f at all the points between (a, b) and (a+ h, b+ i), then you

ould probably just evaluate f at (a+ h, b+ i) diretly. However, if there is a value M suh that you know
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that none of the derivatives of f of order k + 1 have an absolute value greater than M at any point be-

tween (a, b) and (a+ h, b+ i), then you an leave o� the integrals to get an approximation of f(a+ h, b+ i)
and then use M to get an estimate of the error of this approximation:

f(a+ h, b+ i) ≈ f(a, b), a onstant approximation, if f is ontinuous;

f(a+ h, b+ i) ≈ f(a, b) + D1f(a, b)h+D2f(a, b)i, a linear approximation, if f is di�erentiable;

f(a+ h, b+ i) ≈ f(a, b) + D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2
,

a quadrati approximation, if f is twie di�erentiable;

.

.

.

with

|f(a+ h, b+ i)− f(a, b)| ≤ M1(|h|+ |i|)
if |D1f | and |D2f | are never greater than M1 between (a, b) and (a+ h, b+ i),

∣∣f(a+ h, b+ i)−
(
f(a, b) + D1f(a, b)h+D2f(a, b)i

)∣∣ ≤ 1

2
M2(|h|+ |i|)2

if |D1,1f |, |D1,2f |, and |D2,2f | are never greater than M2 between (a, b) and (a+ h, b+ i),

∣∣∣∣f(a+ h, b+ i)−
Å
f(a, b) + D1f(a, b)h+D2f(a, b)i+

1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2

ã∣∣∣∣

≤ 1

6
M3(|h|+ |i|)3

if |D1,1,1f |, |D1,1,2f |, |D1,2,2f |, and |D2,2,2f | are never greater than M3 between (a, b) and (a+ h, b+ i),
et.

Using vetors, we an write the �rst approximation and its error in any number of variables:

f(P0 + v) ≈ f(P0),

|f(P0 + v)− f(P0)| ≤ M1 |v|1,

where |v|1 is the so-alled 1-norm of v, found by adding up the absolute values of its omponents. (The

usual magnitude is then alled the 2-norm, beause these absolute values are raised to the power of 2 be-

fore they are added and then the prinipal root of index 2 is extrated; in general, you an onsider the

p-norm |v|p for any positive real number p, or even other values of p if you re su�iently lever.) We an

also write the seond approximation and its error using vetors:

f(P0 + v) ≈ f(P0) +∇f(P0) · v,
∣∣f(P0 + v)−

(
f(P0) +∇f(P0) · v

)∣∣ ≤ 1

2
M2 |v|21.

The next approximation, however, requires dyadis to write down, whih are more ompliated than ve-

tors; to write down the general ase to any order involves a massive generalization of vetors alled ten-

sors. However, you an always write it down in any spei� dimension by writing a lot of terms aord-

ing to the appropriate pattern, as I did on the previous page; there is also a tehnique, alled multi-index

notation, to enode these patterns, whih you an see (for example) on the English Wikipedia artile on

Taylor s Theorem (as of today).

It s handy to desribe these approximations in terms of di�erentials and di�erenes. While a di�eren-

tial represents an in�nitesimal (in�nitely small) hange, a di�erene represents an appreiable or �nites-

imal (not in�nitely small) hange. As P = (x, y) (or (x, y, z) et) hanges from P0 to P0 + v, we say that

the di�erene in P is

∆P = (P0 + v)− P0 = v.
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Meanwhile, if u = f(P ), then the di�erene in u is

∆u|P=P0,
∆P=v

= f(P0 + v)− f(P0).

Then the onstant approximation says

∆u|P=P0,
∆P=v

≈ 0,

while the linear approximation says (more preisely)

∆u|P=P0,
∆P=v

≈ du|P=P0,
dP=v

.

So in the end, the linear approximation replaes di�erenes with di�erentials. The next (quadrati) ap-

proximation an be written using the seond di�erential d2u, and so on, but we won t over that in this

lass. The error estimates are ∣∣∣∣∆u|P=P0,
∆P=v

∣∣∣∣ ≤ M1 |v|1

and ∣∣∣∣∆u|P=P0,
∆P=v

− du|P=P0,
dP=v

∣∣∣∣ ≤
1

2
M2 |v|21.

4.11 Optimization

Literally, optimization is making something the best, but we use it in math to mean maximization, whih

is making something the biggest. (You an imagine that the thing that you re maximizing is a numerial

measure of how good the thing that you re optimizing is.) Essentially the same priniples apply to min-

imization, whih is making something the smallest. (And pessimization is making something the worst,

although people don t use that term very muh, beause who would want to do that?) A generi term for

making something the largest or smallest is extremization.

The key priniple of optimization is this:

A quantity u an only take a maximum (or minimum) value when its di�erential du is zero or

unde�ned.

If you write u as f(x, y), where f is a �xed di�erentiable funtion of (say) 2 variables, and x and y are

quantities whose range of possible values you already understand (typially intervals), then du =

D1f(x, y) dx+D2f(x, y) dy, or equivalently, du = ∂u

∂x
dx+ ∂u

∂y
dy.

So one way that u might oneivably take an extreme value is if either (or both) of its partial deriva-

tives are unde�ned. Another way is if both (not just one) of its partial derivatives are zero. If you an

vary x and y smoothly however you please (essentially, if you are in the interior of the domain of f and

you are free to aess the entire domain), then these are the only possibilities. However, if you annot vary

them smoothly (essentially, if you are on the boundary of the domain of f or if the situation is otherwise

onstrained so that you annot aess the entire domain of f), then there are more possibilities!

If your onstraint (or onstraints) an be written as an equation g(x, y) = 0 (or really, with any on-

stant on the right-hand side), then as long as the gradient ∇g is never zero on the solution set of the on-

straint equations, then you an use the method of Lagrange multipliers. Here, you set up an equation

∇f(x, y) = λ∇g(x, y), ombine this with the equation g(x, y) = 0, and try to solve for x, y, and λ. (Sine
a vetor equation is equivalent to 2 salar equations, this amounts to a system of 3 equations in 3 vari-

ables, so there is hope to solve for it.) If you re working in 3 variables, then you might need two equations

to speify the onstraint, in whih ase there are two funtions in the plae of g and two Lagrange mul-

tipliers. (But you an also have just one g even in 3 dimensions; it s a question of whether the boundary

in question is a surfae or a urve.) While λ ultimately doesn t matter, the solutions that you get for the

original variables give you additional ritial points to hek for extreme values.

On the other hand, you don t atually need Lagrange multipliers! Writing v for g(x, y), if the on-
straint is v = 0 (or any onstant), then di�erentiate this to get dv = 0. (In fat, you ould take any equa-

tion and just di�erentiate both sides.) Then if you try to solve the system of equations onsisting of du = 0
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and dv = 0 for the di�erentials dx and dy, you should immediately see that dx = 0 and dy = 0 is a solu-

tion. However, if you atually go through the steps of solving this as a system of linear equations (whih

you an always do beause di�erentials are always linear in the di�erentials of the independent variables),

you ll �nd that at some point you need to divide by some quantity involving x and y, whih is invalid if

that quantity is zero! So, setting whatever you divide by to zero and ombining that with the onstraint

equation v = 0, you get two equations to solve for the two variables x and y. (With this method, λ never

enters into it.) This will give you the other ritial points to hek for extreme values.

Be areful, beause u might not have a maximum or minimum value! Assuming that u varies on-

tinuously (whih it must if Callulus is to be useful at all), then it must have a maximum and minimum

value whenever the domain of the funtion (inluding any onstraints) is both losed and bounded (whih

is alled ompat); this means that if you pass ontinuously through the possibilities in any way, then you

are always approahing some limiting possibility. However, if the range of possibilities heads o� to in�ni-

ty in some way, then you also have to take a limit to see what value u is approahing, whih an be very

di�ult to do in more than one dimension. Or if there is a boundary that s not inluded in the domain,

then you have to take a limit approahing that boundary, although in that ase you an hope that you an

hek the boundary as if it were inluded, the same way as above. If any suh limit is larger than every

value that u atually reahes (whih inludes the possibility that a limit is ∞), then u has no maximum

value; if any suh limit is smaller than every value that u atually reahes (whih inludes the possibility

that a limit is −∞), then u has no minimum value.

So in the end, you look at these possibilities to optimize u:

• when any partial derivative of u is unde�ned,

• when all partial derivatives of u are zero,

• any boundary possibilities given by a onstraint,

• any orners (boundaries of the boundaries) given by two onstraints,

• any orners of orners given by three onstraints (not possible in only 2 dimensions),

• et (in more than 3 dimensions), and

• the limits approahing impossible limiting ases.

Whihever of these has the largest value of u gives you the maximum, and whihever has the smallest val-

ue of u gives you the minimum; but if the largest or smallest value is only approahed in the limit, then

the maximum or minimum tehnially does not exist. (In this ase, it is alled a supremum or in�mum

instead.)

Here is a typial problem: The hypotenuse of a right triangle (maybe it s a ladder leaning against a

wall) is �xed at 20 feet, but the other two sides of the triangle ould be anything. Still, sine it s a right

triangle, we know that l2 + h2 = 202, where l and h (length and height) are the lengths of legs of the tri-

angle. (If we think of l and h as independent variables, then this equation is our onstraint.) Di�erentiat-

ing this, 2l dl + 2h dh = 0. Now suppose that we want to maximize or minimize the area of this triangle.

Sine it s a right triangle, the area is A = 1
2 lh, so dA = 1

2h dl +
1
2 l dh. If this is zero, then

1
2h dl+

1
2 l dh =

0, to go along with the other equation 2l dl + 2h dh = 0.
The equations at this point are linear in the di�erentials (as they always must be), so think of this as

a system of linear equations in the variables dl and dh. There are various methods for solving systems of

linear equations; I ll use the method of addition aka elimination, but any other method should work just

as well. So

1
2h dl +

1
2 l dh = 0 beomes 2lh dl+ 2l2 dh = 0 (multiplying both sides by 4l), while 2l dl +

2h dh = 0 beomes 2lh dl+ 2h2 dh = 0 (multiplying both sides by h). Subtrating these equations gives

(2l2 − 2h2) dh = 0, so either dh = 0 or l2 = h2
. Now, l and h an hange freely as long as they re posi-

tive, but we have limiting ases: l → 0+ and h → 0+. Sine l2 + h2 = 400, we see that l2 → 400, so l → 20,

as h → 0. Similarly, h → 20 as l → 0. In those ases, A = 1
2 lh → 0. On the other hand, if l2 = h2

, then

l = h, so l, h = 10
√
2, sine l2 + h2 = 400. In that ase, A = 1

2 lh = 100.

So the largest area is 100 square feet, and while there is no smallest area, the area an get arbitrarily

small with a limit of 0.
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5 Integration on urves

Di�erential 1-forms (that is di�erential forms without the wedge produt that we will get to in Chapter 6)

an be integrated along urves. To a large extent, that is what they are for. Sine di�erential forms are

made of di�erentials and the de�nition of the di�erential of an expression (at least the one that I gave in

Setion 4.6 earlier) is ultimately about urves, this is a very natural operation.

5.1 The de�nition

Like the textbook does for one-variable Calulus, I ll de�ne the Riemann integral as a limit of Riemann

sums, although there are more general notions of integration that an handle more expressions. The Rie-

mann integral will be su�ient for pieewise ontinuous di�erential forms (those de�ned in one or more

piees using ontinuous operations applied to ontinuous quantities and the di�erentials of ontinuously

di�erentiable quantities) along pieewise ontinuously di�erentiable urves (those with parametrizations

de�ned in one or more piees using ontinuously di�erentiable operations applied to the parameter).

So, suppose that we have a di�erential form α written using the variables P = (x, y, . . .) and their

di�erentials, and a urve in the same number of dimensions, given by some parametrization funtion C
whose domain is a losed interval [a, b]. Then we an try to integrate α along the urve where P = C(t),
by de�ning the integral w

P=C(t)
α,

or w
C
α

for short.

Given any way of dividing the interval [a, b] into a partition a = t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn = b (with
n subintervals) and tagging this partition with n values ck with tk−1 ≤ ck ≤ tk for k from 1 to n (this is

exatly the kind of partition onsidered in one-variable Calulus, as on pages 304�306 of the textbook),

there is a Riemann sum

n∑

k=1

α|P=C(ck),
dP=C(tk)−C(tk−1)

.

That is, on the kth subinterval, we evaluate the form α at the point through whih the urve passes at

time ck within that subinterval along the vetor from where the urve is at the beginning of the subin-

terval to where it is at the end of the subinterval. If we require that the magnitude of this vetor be less

than δ and take the limit as δ → 0+, then this limit (if it exists) is the value of the integral. And there is

a theorem that it does exist, at least if α is pieewise ontinuous and C is pieewise ontinuously di�er-

entiable (and sometimes otherwise); I don t know a nie proof of this diretly, but you an prove that it

exists beause the pratial alulation method on page 50 works.

There is now another nie theorem, that the value of this integral does not depend on the parametri-

zation of the urve, at least not very muh. That is, if φ is a funtion in the ordinary sense (a real-valued

funtion of one real variable), then C ◦ φ is another parametrized urve; if φ is one-to-one and inreasing

(so that we travel along the urve in the same diretion without repetition) and its range inludes the en-

tire domain of C (so that we over the entire urve), then the theorem is that

r
C
α =

r
C◦φ

α. The proof is

that any Riemann sum for C is also a Riemann sum for C ◦ φ; the same points C(tk) and C(ck) our in
the same order, just at di�erent values of the parameter. So the Riemann integrals, whih are the limits of

these Riemann sums, must also be the same.

For this reason, we usually don t speify a parametrized urve in the notation at all. Instead, we spe-

ify an oriented urve, whih is anything that ould be given as a parametrized urve, keeping trak of

whih diretion we travel along the urve (this is the orientation of the urve) but otherwise ignoring the

parametrization.
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5.2 Evaluating integrals along urves

The pratial method of evaluating integrals along urves is to pik any onvenient parametrization (prefer-

ably one that is ontinuously di�erentiable) and put everything in terms of that parameter. For example,

to integrate 2xdx+ 3xy dy along the top half of the irle x2 + y2 = 4, oriented ounterlokwise, try the

parametrization where x = 2 cos t, y = 2 sin t, and 0 ≤ t ≤ π. Then dx = −2 sin t dt and dy = 2 cos t dt, so
the value of the integral is

w
x2+y2=4, y≥0

dx≤0

(2xdx+ 3xy dy) =
w π

t=0

(
2(2 cos t)(−2 sin t dt) + 3(2 cos t)(2 sin t)(2 cos t dt)

)

=
w π

t=0
(−8 sin t cos t+ 24 sin t cos2 t) dt = 16.

(You an do this last integral with the substitution u = cos t.) I ve desribed the urve of integration with

an equation (of a irle) and an inequality (to get the top half only) and oriented it by saying that x is

always dereasing (so that dx is always negative), but usually people write that all out to the side some-

where, all the resulting oriented urve C (for example), and write

r
C
(2xdx+ 3xy dy).

The reason why this gives the orret result is that any Riemann sum for the integral involving t in-
volves almost the same alulations as a Riemann sum for the integral along the urve. The only di�er-

ene is that the integral involving t looks at the point from within eah subinterval to handle the di�er-

entials, whereas the integral of the urve looks at the points on eah end of the subinterval. But in the

limit, all of these points approah eah other, and the result is the same. (There is another slight ompli-

ation beause the integral involving t takes a limit as the hange in t goes to 0, while the integral along
the urve takes a limit as the magnitude of the hange in position goes to 0. However, these are the same

beause the parametrization is ontinuous. If you an alulate dx and dy at all, then the parametrization

must be di�erentiable and so de�nitely ontinuous.)

You should be able to visualize this example geometrially well enough to see that the answer would

have to be positive. The term 2xdx should ompletely anel, beause the right half of the urve exatly

mirrors the left half, with dx the same on both halves (always negative beause of movement to the left)

but x being the opposite on the two halves (�rst positive, then negative). On the other hand, the term

3xy dy will be negative on both sides; while y is always positive (above the horizontal axis), x and dy are

both positive on the right half (right of the vertial axis and moving upwards) and both negative on the

left half (left of the axis and moving downwards), making for a positive produt everywhere.

5.3 Integrating vetor �elds

If you are asked to integrate a vetor �eld F along an oriented urve, then they really want you to inte-

grate the di�erential form F(x, y) · 〈dx, dy〉, or more generally F(P ) · dP , where P is (x, y) or (x, y, z). If
you write r for the vetor P −O (where O is the origin (0, 0) or (0, 0, 0)), then dP = dr, and this is the

reason for the traditional notation

r
C
F · dr, whih is used in the textbook. (You may also see

r
C
F ·Tds,

where ds is the ds that appears in Setion 5.4 on the next page and T is de�ned to be dr/ds. This is usu-
ally ompletely pointless; if you see Tds, just think of it as dr.)

For example, to integrate 〈2x, 3xy〉 along the same semiirle as in the previous example (with the

same orientation), you do exatly the same integral as in the previous example. This is beause

〈2x, 3xy〉 · 〈dx, dy〉 = 2xdx+ 3xy dy,

so w
C
〈2x, 3xy〉 · dr =

w
C
(2xdx+ 3xy dy) = 16

as before. Sine the vetor 〈2x, 3xy〉 points to the right on the right side and to the left on the left side,

while we move along the urve onsistently to the left, this suggests that the horizontal omponent should

anel. However, sine this vetor points upwards where we move upwards along the urve (on the right

side) and points downwards where we move downards along the urve (on the left side), this suggests a

positive ontribution from the vertial omponent. So as in the �rst example, you should expet a positive

result even before doing the alulation.
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5.4 Integrating salar �elds

If you are asked to integrate a funtion f along a urve, then they really want you to integrate the di�er-

ential form f(x, y)
√
dx2 + dy2, or more generally f(P ) |dP |. It s traditional to write ds for |dP | (or |dr|,

whih is the same), but it s important that there is no quantity s de�ned everywhere on the oordinate

plane that ds is the di�erential of. To emphasize this, you an write d̄s; `d̄' is a symbol that some people

use when something is traditionally written with `d' but is not really a di�erential.

As long as the di�erentials dx et appear only in d̄s, then the result of the integral is independent

of orientation, beause replaing dx with −dx (as would happen upon reversing the orientation) doesn t

hange d̄s. For this reason, you an integrate a funtion on an unoriented urve. When parametrizing,

everything will ome out using |dt| instead of dt, but as long as the integral involving t has its bounds set
up so that t is inreasing, then dt is positive and so |dt| = dt, after whih you an integrate normally.

For example, to integrate f(x, y) = 6x2y on the same semiirle as in the previous examples, you get

d̄s =
√
dx2 + dy2 =

»
(−2 sin t dt)2 + (2 cos t dt)2 =

»
(4 sin2 t+ 4 cos2 t) dt2 =

√
4
√
dt2 = 2 |dt|.

Thus, the integral isw
x2+y2=4, y≥0

6x2y d̄s =
w π

t=0
6(cos t)

2
(sin t)(2 |dt|) =

w π

t=0
12 sin t cos2 t dt = 8.

Sine x2y is positive everywhere on this urve, you should have expeted a positive result.

If for some reason you set the integral up bakward, then dt would be negative and so |dt| would be

−dt, and the result would be the same in the end:

w
C
d̄s =

w 0

t=π
12 sin t cos2 t |dt| =

w 0

t=π
12 sin t cos2 t(−dt) = −

w 0

t=π
12 sin t cos2 t dt = −(−8) = 8.

(But it s simpler to always set things up so that the parameter is inreasing.)

5.5 Pseudooriented urves

In 2 dimensions, you ll sometimes be asked to integrate a vetor �eld aross a urve rather than along it

as usual. Although there is no standard notation for this, you an write it as as F× dr in analogy with

the usual F · dr. The textbook sometimes writes F · n ds, where n = ×T and dr = Tds, but this just re-
sults in F · ×dr = F× dr.

This is the 2-dimensional ross produt, so the result is still a salar. Tehnially, however, it is a-

tually a pseudosalar, beause its sign depends on how you orient the plane (ounterlokwise as is the

onvention, or lokwise instead). Similarly, speifying a diretion aross a urve really gives the urve a

pseudoorientation, beause it only de�nes a diretion along the urve (an orientation) by piking a on-

vention about how these diretions orrespond. In pratie, we orient the plane ounterlokwise, meaning

that ounterlokwise ross produts are positive, the rotation ×v of a vetor v is obtained by rotating it

lokwise, a diretion aross a urve turns into a diretion along it by rotation ounterlokwise, and a di-

retion along a urve turns into a diretion aross it by rotating lokwise. But if you onsistently did all

of these the other way, then the results of all integrals would be the same.

For example, to integrate 〈2x, 3xy〉 aross our semiirle, now pseudooriented upwards, integrate

〈2x, 3xy〉 × 〈dx, dy〉 = 2xdy − 3xy dx,

and use the orientation ounterlokwise from upwards, whih is leftwards (the same as in �rst example):w
x2+y2=4, y≥0

dy≥0

〈2x, 3xy〉 × dr =
w

x2+y2=4, y≥0
dx≤0

(2xdy − 3xy dx)

=
w π

t=0

(
(2(2 cos t)(2 cos t dt))− 3(2 cos t)(2 sin t)(−2 sin t dt)

)

=
w π

t=0
(8 cos2 t+ 24 sin2 t cos t) dt = 4π.

Sine the vetor 〈2x, 3xy〉 points to the right where we ross the urve to the right (on the right side) and

points to the left where we ross to the left, this suggests that the horizontal omponent should give a pos-

itive result. However, sine this vetor points upwards on the right side and downwards on the left side,

while we ross the urve onsistently upwards, this suggests that the vertial omponent should anel. So

you should again expet a positive result before doing the alulation.
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5.6 The Fundamental Theorem of Calulus

In one-variable Calulus, the seond Fundamental Theorem states that

w b

x=a
f ′(x) dx = f(b)− f(a).

If we write u for the quantity f(x), then its di�erential du is preisely the integrand f ′(x) dx, so the Fun-

damental Theorem an also be written as w b

a
du = u|ba.

This works just as well when there are several independent variables as when there is just one. Now if u =
f(P ), then du is ∇f(P ) · dr, so w b

P=a
∇f(P ) · dr = f(b)− f(a).

Although this is now a theorem about integrating a gradient along a urve, in essene it is still just the

ft, a theorem about integrating di�erentials. This has a massive generalization to higher-rank di�eren-

tial forms, alled the Stokes Theorem, whih we ll get to in Chapter 8.

A di�erential form is alled exat if there exists a quantity u suh that α = du. Similarly, a ve-

tor �eld F is alled onservative if there is a salar �eld f suh that F = ∇f . The onnetion between

these is that F is onservative if and only if F(P ) · dr is exat. (After all, if F = ∇f , then F(P ) · dr =
d
(
f(P )

)
.) An oriented urve is alled losed if its beginning and ending points are the same; one some-

times emphasizes that an integral is along a losed urve by writing

u
in plae of

r
. Then the integral of

an exat di�erential form along a losed urve is zero, beause

z
C
α =

w a

a
du = u|aa = u|a − u|a = 0.

Similarly, the integral of a onservative vetor �eld along a losed urve is zero. In this ase, we an use

notation more like that of a de�nite integral in one variable:

w P2

P=P1

α

means the integral of α along any urve from P1 to P2. It doesn t matter whih urve you use; if C1 and C2

are both urves like this, then these ombine into a losed urve C1 − C2, in whih you start at P1, follow

C1 to P2, then follow C2 bakwards (hene the minus sign) bak to P1. Then

w
C1

α−
w
C2

α =
z
C1−C2

α = 0,

so

r
C1

α =
r
C2

α. (This is still unde�ned if there is no urve from P1 to P2 through the domain of α. This

is analogous to the ase in one dimension of an integral

r b

x=a
f(x) dx where f is unde�ned somewhere be-

tween a and b. If the unde�ned region is su�iently small, then this an be handled with improper inte-

grals or other methods, but we don t onsider that in this lass.)

Conversely, if the integral of a di�erential form or of a vetor �eld is zero along every losed urve,

then that di�erential form must be exat or that vetor �eld must be onservative. The reason is that in

this ase (and only in this ase) we an pik a point P0 to start from and de�ne a semide�nite integral

u =
w
P=P0

α =
w P

P0

α.

Beause α is exat, you get the same result no matter whih path you use from P0 to P . (Ideally, the do-
main of α should be path-onneted, meaning that there exists a urve between any two points. If not,

then you must split the domain into various path-onneted omponents and pik a point in eah.) That

du = α in this ase is essentially the multivariable version of the �rst Fundamental Theorem of Calulus.
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Given a di�erential form α, �nding suh an expression u is a form of inde�nite integration. It s not

pratial to hek every possible urve, of ourse, so we need other methods to deide if α is exat, and

this an also help us to �nd u. There are atually several methods; one is given in the textbook, essential-

ly reversing the proess of partial di�erentiation with a kind of partial inde�nite integration. (If you try

this method when α is not exat, then it will fail.)

If the domain of α is reasonably simple, then it s possible to pik a point P0 and write down a general

formula for a parametrized urve from P0 to any point P . (For example, you ould always use a straight

line segment, as long as these line segments always lie entirely within the domain.) If you try this method

when α is not exat, then you may get a result; but when you hek it, then you ll �nd that it s wrong (its

di�erential does not equal α) when α is not exat.

It s often possible to tell ahead of time whether α is exat. To really explain what s going on here, I ll

need to talk about the exterior di�erential, whih is a topi that we ll get to in Chapter 8. For now, I ll

desribe it in terms of partial derivatives. So, if α = du, then

α =
∂u

∂x
dx+

∂u

∂y
dy + · · · .

(The dots are meant to indiate that more terms may appear if there are more than two variables.) As-

suming that u is twie di�erentiable, then mixed seond partial derivatives are equal:

∂2u

∂x ∂y
=

∂2u

∂y ∂x
.

So if you start with an arbitrary linear di�erential 1-form

α = αx dx+ αy dy + · · · ,

then it ould only be exat if it is losed, meaning that

∂αx

∂y
=

∂αy

∂x

(and similarly for other mixtures of derivatives if there are more than two variables), assuming that it s

di�erentiable in the �rst plae. Similarly, a vetor �eld

F(x, y, . . .) = F1(x, y, . . .)i+ F2(x, y, . . .)j+ · · ·

an only be onservative if it is irrotational, meaning that

D2F1 = D1F2

(and similarly for other mixtures of derivatives if there are more than two variables), assuming that it s

di�erentiable in the �rst plae.

Conversely, a losed di�erential form or an irrotational vetor �eld must be exat or onservative (re-

spetively) if its domain is preisely-simply onneted, whih means that any simple losed urve (one

that doesn t interset itself exept where its two endpoints are equal) in the domain of the di�erential form

or the vetor �eld is the boundary of a region that lies entirely within that domain. (The domain is simply

onneted if it is both path-onneted and preisely-simply onneted. Conversely, it is preisely-simply

onneted if eah of its path-onneted omponents is simply onneted. If you take a lass in Topology

suh as Math 471 at Unl, then you ll learn dozens of spei� terms like these.) But a full disussion of

the reasons for this must wait until Chapter 8.
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6 Multiple integrals

In multivariable Calulus, we an also integrate with respet to more than one variable at a time. (But in

pratie, you usually work out these integrals by treating eah variable in turn using the theorems from

Setion 6.2 on the next page.)

6.1 Notation

If you have a relation R (between 2 variables), you an think of this as a set of ordered pairs, de�ning

a region in the oordinate plane; if you also have a funtion f of 2 variables, then you an try to integrate

f on R. Similarly, if R is relation between 3 variables, then you an think of this as a region in 3-dimen-

sional spae; if f is now a funtion of 3 variables, then you an again try to integrate f on R.
These may be written

r
R
f , or

r
(x,y)∈R

f(x, y) (in 2 dimensions) or

r
(x,y,z)∈R

f(x, y, z) (in 3 dimensions)

for more detail. But to really speify what is being integrated, the proper notation is

w
(x,y)∈R

f(x, y) |dx ∧ dy|

(in 2 dimensions) or w
(x,y,z)∈R

f(x, y, z) |dx ∧ dy ∧ dz|

(in 3 dimensions), whih will be explained in Setion 6.5 starting on page 60. Most people don t write all

of this out, however; in partiular, the textbook writes

s
R
f(x, y) dxdy (in 2 dimensions) or

t
R
f(x, y, z)

dxdy dz (in 3 dimensions); the repeated integral symbols are atually unneessary in ontext, but other-

wise this is a simpli�ation of the proper notation that I wrote above.

Note that in any spei� example (say in 2 dimensions), the statement that (x, y) ∈ R and the ex-

pression f(x, y) will be replaed with a more expliit statement and a more expliit expression. For exam-

ple, if R = {x, y | x2 + y2 ≤ 1} and f = (x, y 7→ 2x+ 3y) (that is, f(x, y) = 2x+ 3y for all x and y), thenr
(x,y)∈R

f(x, y) |dx ∧ dy| beomes w
x2+y2≤1

(2x+ 3y) |dx ∧ dy|,

and you would often write this without diretly mentioning either R or f .
Another notation is to write dA and dV in plae of |dx ∧ dy| and |dx ∧ dy ∧ dz| respetively, but note

that these are not the di�erentials of any quantities A and V ; you an write d̄ in plae of d to avoid this

misleading impression, but hardly anybody ever does that. In any ase, whether you write it |dx ∧ dy|,
dxdy, dA, or d̄A, this part of the integrand is alled the area element; similarly, |dx ∧ dy ∧ dz|, dxdy dz,
dV , and d̄V are all ways to write the volume element.

The textbook de�nes these integrals formally as a limit of Riemann sums reated by dividing the re-

gion R into retangles with horizontal and vertial sides. I prefer to de�ne them by dividing R into trian-

gles with sides in arbitrary diretions. Either way, you tag suh a partition of R so that eah part (eah

retangle or triangle) is tagged with a spei� point, evaluate f at that point, multiply by the area of the

part (sine the areas of retangles and triangles are easy to alulate), and add these up. The limit as the

length of the largest side of any part goes to zero, if it exists, is the value of the Riemann integral. (I am

speaking here as if we are in 2 dimensions; in 3 dimensions, replae retangles with boxes, triangles with

tetrahedrons, and areas with volumes. This an also be generalized to higher dimensions.)

The two de�nitions are equivalent, basially beause retangles an always be divided further into tri-

angles by utting them in half (and boxes an be divided into tetrahedrons by utting them into sixths,

et). Proving equivalene in the other diretion is trikier, beause you an t divide triangles into retan-

gles (muh less ones parallel to the oordinate axes as the textbook requires); however, you an divide any

triangle almost ompletely into small retangles, with only a small part left over, and this small leftover

part beomes arbitrarily small with su�iently small retangles. This is enough to make the proof work

when it s written out in full, but I won t get into that level of detail here.
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6.2 The Fubini theorems

As a pratial matter, evaluating these integrals depends on these theorems:

1. The integral of a ontinuous funtion on a ompat (that is losed and bounded) region always exists:r
(x,y)∈D

f(x, y) |dx ∧ dy| exists if f is ontinuous and D is ompat (and similarly in more variables).

2. If two regions D1 and D2 are ompletely disjoint (no overlap at all), or if their overlap is ontained

within a single point/line/plane/et of fewer dimensions than the overall number of variables, and if a

funtion f has integrals on both of these regions, then the integral of f on their union (the ombined

region D1 ∪D2) also exists and is the sum of the separate integrals:

w
(x,y)∈D1∪D2

f(x, y) |dx ∧ dy| =
w
(x,y)∈D1

f(x, y) |dx ∧ dy|+
w
(x,y)∈D2

f(x, y) |dx ∧ dy|

(and similarly in more variables) if the integrals on the right exist and the overlap has a smaller di-

mension.

3. In any double (or higher) integral, if two of the variables are swapped in both the funtion being in-

tegrated and in the region over whih it is integrated (or equivalently, by renaming the variables, by

swapping the variables only within the area/volume/et element), then the result is the same (so that

if either integral exists, then so does the other, and then they are equal):

w
(x,y)∈D

f(x, y) |dx ∧ dy| =
w
(x,y)∈D

f(x, y) |dy ∧ dx|

(and similarly in more variables).

4. For a region D in 2 dimensions, if there are onstants a and b with a ≤ b and ontinuous funtions g
and h (eah of 1 variable) suh that (x, y) ∈ D if and only if a ≤ x ≤ b and g(x) ≤ y ≤ h(x), and if

g(x) ≤ h(x) whenever a ≤ x ≤ b, then the integral of any ontinuous funtion f on D is the same as a

orresponding iterated integral :

w
(x,y)∈D

f(x, y) |dx ∧ dy| =
w b

x=a

Åw h(x)

y=g(x)
f(x, y) dy

ã
dx.

Tehnially, the inner integral here is an integral along a urve (atually a straight line segment) in

the (x, y)-plane, as in Chapter 5, with a onstant value of x.

5. For a region D in 3 (or more) variables, if there are a ompat region R in 2 variables (or in general

a ompat region of one fewer dimension) and ontinuous funtions g and h of 2 variables eah (or in

general with the same number of variables as R has dimensions) suh that (x, y, z) ∈ D if and only if

(x, y) ∈ R and g(x, y) ≤ z ≤ h(x, y), and if g(x, y) ≤ h(x, y) whenever (x, y) ∈ R (or similarly in more

variables), then the integral of any ontinuous funtion f on D is the same as a orresponding iterat-

ed integral:

w
(x,y,z)∈D

f(x, y, z) |dx ∧ dy ∧ dz| =
w
(x,y)∈R

Åw h(x,y)

z=g(x,y)
f(x, y, z) dz

ã
|dx ∧ dy|

(and similarly in more variables).

The last two of these are the Fubini Theorem (for Riemann integrals of ontinuous funtions).

By itself, the Fubini Theorem only works for regions of partiular shapes, but the other theorems

ombine to make it more useful. First of all, Theorem 3 allows us to put the variables in whatever or-

der we like. Even so, the regions still require partiular shapes; we an just orient those however we wish.

Theorem 2, at least in many ases, allows us to divide a region up into smaller regions appropriate for the

Fubini Theorem; the only question is whether the integrals exist. Theorem 1 guarantees this existene for

ontinuous funtions.

So using these in order, if you want to integrate over a razy region, then divide the region into piees

of suitable shape. If the funtion is ontinuous and these smaller regions are all ompat, then you know

that their integrals exist; and if the regions overlap only slightly, then you an reover the answer to the

original problem by adding them up. Finally, to get the integrals on these small regions, think of the vari-

ables as oming in whihever order works best, and use the Fubini Theorem (possibly more than one) to

replae double and triple integrals with iterated integrals. Hopefully, these will be integrals that you an

do!
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6.3 Systems of inequalities

In order to set up multiple integrals, it is neessary to solve systems of inequalities, a topi that isn t

given muh attention in Algebra ourses. It s also neessary to present the solutions in a spei� form. For

purposes of multiple integration, a system of inequalities is solved if it takes a form suh as this:

a ≤ x ≤ b,

f(x) ≤ y ≤ g(x),

h(x, y) ≤ z ≤ k(x, y);

where x, y, and z are the variables in the system, a and b are onstants with a ≤ b, f and g are funtions

with the property that f(x) ≤ g(x) whenever a ≤ x ≤ b, and h and k are funtions of two variables suh

that h(x, y) ≤ k(x, y) whenever a ≤ x ≤ b and f(x) ≤ y ≤ g(x). (In other words, as you go through the

inequalities in the list, if you have values of the variables so far that make all of the inequalities true so

far, then there is at least one value of the next variable that also makes the next inequality true.)

This solution orresponds to an iterated integral of the form

w b

a

w g(x)

f(x)

w k(x,y)

h(x,y)
· · · dz dy dx.

Of ourse, there ould be more or fewer than 3 variables, and they don t have to ome in alphabetial or-

der. Also, we will onsider the system solved if it s broken into ases, eah of whih takes the form above.

(This orresponds to when you must write a sum of iterated integrals.) In priniple, some or all of the in-

equalities in a system of inequalities (and hene, typially, in its solution) ould be strit, although the

ones that we need will always be weak (so that the domain of integration will be losed). Similarly, one

side or the other of some or all of the ompound inequalities ould be left out, but ours will never do this

(so that the domain of integration will be bounded, at least when the funtions that appear in the solution

are are all ontinuous, so that the Extreme Value Theorem applies).

One way to solve inequalities is to turn them into equations �rst, then test potential solutions on eah

side of the solutions to the equations. (This also requires the expressions involved to be ontinuous, so

that the Intermediate Value Theorem applies.) For ompound inequalities suh as we have here, the di-

retion of the inequality is usually straightforward. Besides that, often a domain of integration is given as

bounded by ertain equations rather than by inequalities, and then you have no hoie but to start with

the equations.

Sometimes the relevant equations will have only one solution (or even none), and you ll �nd the oth-

er bound (or even both) by setting the two bounds on the next line equal. For example, in the solution

template above, you might �nd a and/or b as the solutions to f(x) = g(x) rather than diretly from giv-

en equations or inequalities. (Another way to think of this is that you get a ≤ x ≤ b as the solution to

f(x) ≤ g(x).) Similarly, you might �nd f and/or g by solving h(x, y) = k(x, y) for y.
For example, let s solve this system of inequalities:

x ≥ 0,

y ≥ 0,

z ≥ 0,

x+ y + z ≤ 1.

I ll start at the bottom and work my way up. I ould start with any variable, but to math the pattern

at the beginning of this setion, I ll start with z. If I start with the equations z = 0 and x+ y + z = 1 (by

turning the inequalities that involve z into equations), then the solutions for z are 0 and 1− x− y. Set-
ting these equal and solving for y, I get y = 1− x; turning the only remaining inequality involving y into
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an equation, I also get y = 0. Setting 1− x and 0 equal, I get x = 1; turning the last remaining inequality,

involving only x, into an equation, I get x = 0. At this point, my results look like this:

x = 1, 0;

y = 1− x, 0;

z = 0, 1− x− y.

I still need to turn these into ompound inequalities. Obviously, 1 > 0. Choosing a number in between,

suh as 1/2, for x, I see that 1− x > 0, beause 1− x = 1/2 when x = 1/2. Keeping x = 1/2 and hoos-

ing a number between 0 and 1/2, suh as 1/4, for y, I see that 0 < 1− x− y = 1/4. Therefore, the �nal
solution is

0 ≤ x ≤ 1,

0 ≤ y ≤ 1− x,

0 ≤ z ≤ 1− x− y.

So to integate over this region, I d set up an integral of the form

w 1

0

w 1−x

0

w 1−x−y

0
· · · dz dy dx.

If the previous example were given simply as the region bounded by the oordinate planes and the

plane with x+ y + z = 1, then I would have to solve it pretty muh as above, with equations. Howev-

er, sine it was given originally as a system of inequalities, I ould also have solved it using entirely in-

equalities and no equations. Then I would solve the inequality x+ y + z ≤ 1 for z to get z ≤ 1− x− y,
then ombine this with z ≥ 0 to get the ompound inequality 0 ≤ z ≤ 1− x− y. But this an only ap-

pear in the solution when 0 ≤ 1− x− y; solving this for y, I get y ≤ 1− x. Combining this with y ≥ 0, I
get 0 ≤ y ≤ 1− x. And this is only valid when 0 ≤ 1− x, so x ≤ 1, whih ombines with x ≥ 0 to produe

0 ≤ x ≤ 1. At this point, the solution is omplete:

0 ≤ x ≤ 1,

0 ≤ y ≤ 1− x,

0 ≤ z ≤ 1− x− y.

(But it s easy to get turned around with inequalities, so I usually treat everything as equations �rst and

then �gure out the diretions of the �nal inequalities afterwards.)

You might also start with an integral and want to turn it into a system of inequalities (perhaps be-

ause you want to rearrange the order of the variables.) You an turn it diretly into a system of om-

pound inequalities, but when you look at the inequalities that make these up, some of them are redun-

dant. For example, suppose that you start with

w 1

0

w 1−x

0

w 1−x−y

0
· · · dz dy dx.

This immediately beomes the system

0 ≤ x ≤ 1,

0 ≤ y ≤ 1− x,

0 ≤ z ≤ 1− x− y;

this an be further broken down into

x ≥ 0, x ≤ 1,

y ≥ 0, y ≤ 1− x,

z ≥ 0, z ≤ 1− x− y.
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However, moving from the bottom up, you an see that 0 ≤ z ≤ 1− x− y implies y ≤ 1− x, and 0 ≤ y ≤
1− x implies x ≤ 1. Therefore, the only inequalities diretly needed are

x ≥ 0, y ≥ 0, z ≥ 0, z ≤ 1− x− y,

whih is pretty muh the system that I began with when I worked this example the other way. (You ould

also work with equations rather than inequalities to spot the redundant ones, as long as you an ount on

the original integral being set up properly.) Now you an solve with the variables in a di�erent order if

you wish.

In this way, all of the problems setting up integrals an be solved with Algebra even if you an t get a

lear piture of the region of integration on a graph.

6.4 Change of variables in single integrals

I often say that the di�erentials in expressions suh as 3 dx+ x2 dy + ey dz,
r 1

x=03x
2 dx, and dy/dx an

and should be treated literally, not merely as mnemonis for appreiable hanges in a limit or an approxi-

mation. For this to work in multiple (double, triple, et) integrals, this requires a little are.

One example of how it s useful to take di�erentials literally is that one an do a hange of variables in

a single-variable integral by alulating with di�erentials; for example, to integrate

√
1− x2 dx (say from

x = 0 to x = 1), let u = asinx, so that x = sinu and dx = cosu du, and alulate:

w 1

x=0

√
1− x2 dx =

w asin 1

u=asin 0

»
1− (sinu)

2
(cosu du) =

w π/2

u=0
cos2 u du =

Å
1

2
u+

1

4
sin (2u)

ã∣∣∣∣
π/2

u=0

=
π

4
.

(Inidentally, to integrate cos2 u du, I used the trigonometri identity that cos2 θ = 1/2 + 1/2 cos (2θ).
This, along with sin2 θ = 1/2− 1/2 cos (2θ), will ome up a lot in the rest of this ourse.) You an even

develop a general formula for this hange of variables:

w b

x=a
f(x) dx =

w asin b

u=asin a
f(sinu) cosu du.

If you use this formula with a = 0, b = 1, and f(x) =
√
1− x2

for all x, then you reover the previous al-

ulation. (This is really the same idea that I used for integrating along urves in Chapter 5.)

There is one big di�erene between single-variable integrals as they are usually done in Calulus and

multiple integrals: single-variable integrals are oriented (

r b

x=a
is the integral as x runs from a to b, whereasr a

x=b
is the integral as x runs from b to a, regardless of whether a ≤ b or b ≤ a), while multiple integrals

are unoriented (

r
(x,y)∈R

is the integral on the region R in the (x, y)-plane, without speifying any par-

tiular diretion in that region). In other words, single-variable integrals are like integrals along oriented

urves (as in Setion 15.2 of the textbook), while multiple integrals are like integrals on unoriented urves

(as in Setion 15.1). So, to make the single-variable example above more like a multiple integral, I ll write

it as w
0≤x≤1

√
1− x2 |dx|.

You an interpret this diretly as an integral on a urve, where the urve in question (atually a straight

line segment) is the interval [0, 1] on the real number line. Like integrals on unoriented urves in higher di-

mensions, this needs |dx| =
√
dx2

so that the orientation (from 0 to 1 or from 1 to 0) makes no di�erene:

w
0≤x≤1

√
1− x2 |dx| =

w 1

x=0

√
1− x2 dx =

π

4
, and

w
0≤x≤1

√
1− x2 |dx| =

w 0

x=1

√
1− x2 (−1) dx =

π

4
.

Here, |dx| = dx in the �rst aluluation, beause x is inreasing from 0 to 1, while |dx| = −dx in the next

alulation, beause x is dereasing from 1 to 0; the �nal result is the same either way.
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Then to redo the subsitution u = asinx, instead of simply dx = cosu du, what really matters is that

|dx| = |cosu du| = |cosu| |du| = cosu |du|.

(I an simplify |cosu| to cosu beause u = asinx means that −π/2 ≤ u ≤ π/2, so that cosu ≥ 0. Atual-

ly, I already used this fat, when I simpli�ed

√
1− sin2 u to cosu instead of to |cosu|.) Now the general

formula for the substitution is

w
a≤x≤b

f(x) |dx| =
w
asin a≤u≤asin b

f(sinu) cosu |du|,

and the spei� example is

w
0≤x≤1

√
1− x2 |dx| =

w
0≤u≤π/2

√
1− sin2 u cosu |du| =

w π/2

u∈0
cos2 du =

π

4
.

To atually evaluate this integral, I had to swith from

r
0≤u≤π/2 to

r π/2

u=0 and turn |du| into du (beause u

is inreasing from 0 to π/2); you should think of this as the one-dimensional analogue of turning a multi-

ple integral into an iterated integral (where again the normal way of doing this sets up the bounds on the

integrals so that the variables are inreasing).

Although I gave a general formula for the substitution u = asinx, I an give an even more general

formula, for an arbitrary substitution, where u is an arbitrary funtion of x (well, as long as that fun-

tion is one-to-one and has a di�erentiable inverse). To make it look more like the formulas for multiple

integrals, I ll write this as x = g(u); sine g is one-to-one, however, you an also write u = g−1(x). Then
dx = g′(u) du, so w

a≤x≤b
f(x) |dx| =

w
g−1(a)≤u≤g−1(b)

f
(
g(u)

)
|g′(u)| |du|

if g (and hene g−1
) is inreasing, or

w
a≤x≤b

f(x) |dx| =
w
g−1(b)≤u≤g−1(a)

f
(
g(u)

)
|g′(u)| |du|

if g (and hene g−1
) is dereasing. (A one-to-one funtion de�ned on an interval must be either inreasing

or dereasing to be ontinuous; otherwise, it would violate the Intermediate Value Theorem.)

To avoid the ambiguity of whether g is inreasing or dereasing (and to make things look even more

like the multi-variable ase), I ll write x ∈ R instead of a ≤ x ≤ b, so that R is the interval [a, b], and I ll

write f(u) ∈ R instead of either g−1(a) ≤ u ≤ g−1(b) or g−1(b) ≤ u ≤ g−1(a). Then the formula is

w
x∈R

f(x) |dx| =
w
g(u)∈R

f
(
g(u)

)
|g′(u)| |du|.

This is the omplete analogue of the hange-of-variables formula for double integrals that appears on page 63

in Setion 6.6.

6.5 The wedge produt

There is another ompliation that only appears with more than one variable. On page 55, I wrote the

double integral of f on R as w
(x,y)∈R

f(x, y) |dx ∧ dy|.

You an already see where the absolute value is oming from; as with |dx| in the one-variable ase, it s be-

ause we re integrating over an unoriented region R. But now I want to explain the wedge (∧).
The wedge produt of di�erential forms is kind of like the ross produt of vetors; however, in-

stead of trying to interpret it as another vetor (or a salar), it is simply another di�erential form, but

one of higher `rank' than the original forms. (Just as the operation that produes the ross produt may

be alled outer multipliation of vetors, so the operation that produes the wedge produt may be alled
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exterior multipliation of di�erential forms, but the term `wedge produt' is muh more ommon.) You ve

used di�erential forms earlier in this ourse; those have rank 1, and they an be evaluted at a point and a

vetor. To evaluate a di�erential form of rank 2, you need a point and 2 vetors; to evaluate a di�erential

form of rank 3, you need a point and 3 vetors; and so on.

The wedge produt also involves subtrating one thing from another (again like the ross produt); if

α and β are 1-forms (di�erential forms of rank 1, as we ve been using so far), P0 is a point, and v1 and v2

are vetors, then

(α ∧ β)|P=P0,
dP=v1,v2

=
1

2
α|P=P0,

dP=v1

β|P=P0,
dP=v2

− 1

2
α|P=P0,

dP=v2

β|P=P0,
dP=v1

.

That is, to evaluate the wedge produt α ∧ β at a point P0 and two vetors v1 and v2, �rst evaluate α at

P0 and v1 and evaluate β at P0 and v2, multiply the results, then swap whih vetor goes with whih dif-

ferential form, evaluate and multiply again, then subtrat the two produts, and divide by 2. For example,

if α = x2 dx+ xy dy, β = y2 dx− xy dy, P0 = (2, 3), v1 = 〈0.01, 0.04〉, and v2 = 〈−0.01, 0〉, then
(
(x2 dx+ xy dy) ∧ (y2 dx− xy dx)

)∣∣
(x,y)=(2,3),
d(x,y)=〈0.01,0.04〉,〈−0.01,0〉

=
1

2
(x2 dx+ xy dy)| (x,y)=(2,3),

〈dx,dy〉=〈0.01,0.04〉

(y2 dx− xy dy)| (x,y)=(2,3),
〈dx,dy〉=〈−0.01,0〉

− 1

2
(x2 dx+ xy dy)| (x,y)=(2,3),

〈dx,dy〉=〈−0.01,0〉

(y2 dx− xy dy)| (x,y)=(2,3),
〈dx,dy〉=〈0.01,0.04〉

=
1

2

(
(2)

2
(0.01) + (2)(3)(0.04)

)(
(3)

2
(−0.01)− (2)(3)(0)

)

− 1

2

(
(2)

2
(−0.01) + (2)(3)(0)

)(
(3)

2
(0.01)− (2)(3)(0.04)

)

= (0.28)(−0.09)− (−0.04)(−0.15) = −0.0156.

To see what |dx ∧ dy| has to do with area, look at a triangle whose sides are given by vetors v1 =
〈a, b〉, v2 = 〈c, d〉, and v3 = v2 − v1 = 〈c− a, d− b〉. If you evaluate |dx ∧ dy| at (any point and) v1 and v2,

then you really get the area of this triangle:

|dx ∧ dy|
∣∣
〈dx,dy〉=〈a,b〉,〈c,d〉

=
∣∣(dx ∧ dy)|〈dx,dy〉=〈a,b〉,〈c,d〉

∣∣ =
∣∣∣∣
1

2
(a)(d)− 1

2
(b)(c)

∣∣∣∣ =
1

2
|ad− bc| = 1

2
|v1 × v2|,

whih is indeed the area of the triangle (half the area of a parallelogram). This is ultimately why |dx ∧ dy|
is the right thing to use as the area element in an integral. (Note that the same result omes from using

v3 in plae of either v1 or v2, or by swapping the order of the vetors or using the opposites of either or

both vetors, thereby overing all of the ways to desribe the triangle by giving vetors to represent two of

its three sides.)

A few basi properties of the wedge produt follow immediately from the de�nition:

α ∧ (uβ) = (uα) ∧ β = u(α ∧ β);

(α+ β) ∧ γ = α ∧ γ + β ∧ γ;

α ∧ (β + γ) = α ∧ β + α ∧ γ;

α ∧ β = −β ∧ α;

α ∧ α = 0,

where α, β, and γ are 1-forms and u is a 0-form, that is an ordinary non-di�erential quantity. (What these

equations tehnially mean is that if you evaluate eah side at the same point and vetors, then you ll get

the same result on both sides, assuming that the operations appearing in the expressions are de�ned.) So

if you treat the wedge produt as a kind of multipliation, then you an use the ordinary rules of algebra,
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so long as you keep trak of the order of multipliation in the wedge produt and throw in a minus sign

whenever you reverse the order of multipliation of two 1-forms (similarly to the ross produt of vetors).

To see how this works, revisit the example above where α = x2 dx+ xy dy and β = y2 dx− xy dy.
The wedge produt α ∧ β an be simpli�ed as follows:

*α ∧ β = (x2 dx+ xy dy) ∧ (y2 dx− xy dy)

= (x2 dx) ∧ (y2 dx) + (x2 dx) ∧ (−xy dy) + (xy dy) ∧ (y2 dx) + (xy dy) ∧ (−xy dy)

= (x2)(y2)(dx ∧ dx) + (x2)(−xy)(dx ∧ dy) + (xy)(y2)(dy ∧ dx) + (xy)(−xy)(dy ∧ dy)

*= x2y2(0)− x3y dx ∧ dy + xy3(−dx ∧ dy)− x2y2(0)

*= (−x3y − xy3) dx ∧ dy = −xy(x2 + y2) dx ∧ dy.

I ve written this out in detail so that eah step uses only one of the basi algebrai properties of the wedge

produt; but with a little pratie, you should only need to write down the lines with asterisks after them.

When you multiply the expressions (think FOIL), make sure to keep trak of the order in whih you mul-

tiply the di�erentials; if you multiply a di�erential by itself (suh as dx ∧ dx), then you get zero, and if

you multiply di�erentials in an order di�erent from the order that you prefer (suh as dy ∧ dx instead of

dx ∧ dy if you prefer alphabetial order), then you an rearrange the order if you throw in a minus sign

whenever two di�erentials swith plaes. In this way, you an go from the �rst line in the alulation above

to the next line with an asterisk, skipping over the lines in between. (With a little more pratie, you an

even skip that line and go straight from the �rst line to the last line.)

To hek that this simpli�ation of α ∧ β is orret, I ll evaluate it again at P0 = (2, 3), v1 = 〈0.01, 0.04〉,
and v2 = 〈−0.01, 0〉. I get

(−xy(x2 + y2) dx ∧ dy)| (x,y)=(2,3),
d(x,y)=〈0.01,0.04〉,〈−0.01,0〉

=
(
−xy(x2 + y2)

)∣∣
(x,y)=(2,3)

(dx ∧ dy)|〈dx,dy〉=〈0.01,0.04〉,〈−0.01,0〉

= −(2)(3)
(
(2)

2
+ (3)

2)
Å
1

2
(0.01)(0)− 1

2
(0.04)(−0.01)

ã
= −0.0156,

the same result as before. (Tehnially, what makes the original and simpli�ed versions of α ∧ β equal to

eah other as di�erential forms is preisely that you will get the same results when evaluating them as

long as you use the same point and vetors, no matter whih point and vetors those are.)

To de�ne a wedge produt between forms of higher rank, you have to add and subtrat all possible

permutations of the possible orders in whih to write the vetors at whih the result is evaluated. Keeping

trak of all of this in a general formula is ompliated, but the important point for our alulations is that

the rules above ontinue to apply, and additionally we have an assoiative law for wedge produts:

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).

(This assoiative law is not true for ross produts of vetors, so the wedge produt is easier to work with.)

We will not atually need to evaluate these higher-rank forms in this ourse; what s neessary is to work

with them algebraially. In other words, the only alulation in this setion that is really useful for this

ourse is the one with the asterisks near the top of this page.

6.6 Change of variables in multiple integrals

I m now ready to explain hange of variables in multiple integrals. If x = g(u, v) and y = h(u, v), where g
and h are �xed di�erentiable binary funtions, then

dx ∧ dy = (D1g(u, v) du +D2g(u, v) dv) ∧ (D1h(u, v) du+D2h(u, v) dv)

= D1g(u, v)D1h(u, v) du ∧ du+D1g(u, v)D2h(u, v) du ∧ dv

+D2g(u, v)D1h(u, v) dv ∧ du+D2g(u, v)D2h(u, v) dv ∧ dv

= 0 +D1g(u, v)D2h(u, v) du ∧ dv −D2g(u, v)D1h(u, v) du ∧ dv + 0

=
(
D1g(u, v)D2h(u, v)−D2g(u, v)D1h(u, v)

)
du ∧ dv.
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In other words,

dx ∧ dy =

ÇÅ
∂x

∂u

ã

v

Å
∂y

∂v

ã

u

−
Å
∂x

∂v

ã

u

Å
∂y

∂u

ã

v

å
du ∧ dv.

You an also write this as

dx ∧ dy =
∂(x, y)

∂(u, v)
du ∧ dv,

where

∂(x, y)

∂(u, v)
=

Å
∂x

∂u

ã

v

Å
∂y

∂v

ã

u

−
Å
∂y

∂u

ã

v

Å
∂x

∂v

ã

u

=

∣∣∣∣
(∂x/∂u)v (∂y/∂u)v
(∂x/∂v)u (∂y/∂v)u

∣∣∣∣

is the Jaobian determinant of (x, y) with respet to (u, v). (Notie that this is the determinant of the

Jaobian matrix from Setion 4.8. The Jaobian matrix is indiated with d/d, while the Jaobian determi-

nant is indiated with ∂/∂.)
The general formula for hange of variables now simply requires absolute values:

w
(x,y)∈R

f(x, y) |dx ∧ dy| =
w
(g(u,v),h(u,v))∈R

f
(
g(u, v), h(u, v)

) ∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ |du ∧ dv|,

as long as (g, h) is jointly one-to-one (meaning that (u1, v1) = (u2, v2) whenever
(
g(u1, v1), h(u1, v1)

)
=(

g(u2, v2), h(u2, v2)
)
). It atually still works even if this one-to-one ondition is violated, so long as the

exeptions form a spae of smaller dimension. (I ll explain this by way of example on the next page, in the

disussion of polar oordinates in Setion 6.7.)

(Besides its usual abbreviations, the textbook s version of this formula, whih is Theorem 3 on page 833

in Setion 14.8, writes, in e�et, (u, v) ∈ G instead of

(
g(u, v), h(u, v)

)
∈ R for the domain of the integral

on the right-hand side, where G is e�etively de�ned to be

{
u, v

∣∣ (g(u, v), h(u, v)
)
∈ R

}
. This G is alled

the preimage of R under (g, h). But this means that (u, v) ∈ G preisely when

(
g(u, v), h(u, v)

)
∈ R, so

these integrals say the same thing, and there is no need to mention G expliitly. In pratie, R is given

by some inequalities involving x and y, and you just need to replae those two variables with g(u, v) and
h(u, v) respetively, just like you do in the integrand f(x, y).)

The general formula in 3 dimensions is similar, but more ompliated:

w
(x,y,z)∈R

f(x, y, z) |dx ∧ dy ∧ dz|

=
w
(g(u,v,w),h(u,v,w),k(u,v,w))∈R

f
(
g(u, v, w), h(u, v, w), k(u, v, w)

) ∣∣∣∣
∂(x, y, z)

∂(u, v, w)

∣∣∣∣ |du ∧ dv ∧ dw|,

where

∂(x, y, z)

∂(u, v, w)
=

Å
∂x

∂u

ã

v,w

Å
∂y

∂v

ã

u,w

Å
∂z

∂w

ã

u,v

−
Å
∂x

∂u

ã

v,w

Å
∂z

∂v

ã

u,w

Å
∂y

∂w

ã

u,v

−
Å
∂y

∂u

ã

v,w

Å
∂x

∂v

ã

u,w

Å
∂z

∂w

ã

u,v

+

Å
∂y

∂u

ã

v,w

Å
∂z

∂v

ã

u,w

Å
∂x

∂w

ã

u,v

+

Å
∂z

∂u

ã

v,w

Å
∂x

∂v

ã

u,w

Å
∂y

∂w

ã

u,v

−
Å
∂z

∂u

ã

v,w

Å
∂y

∂v

ã

u,w

Å
∂x

∂w

ã

u,v

=

∣∣∣∣∣∣

(∂x/∂u)v,w (∂y/∂u)v,w (∂z/∂u)v,w
(∂x/∂v)u,w (∂y/∂v)u,w (∂z/∂v)u,w
(∂x/∂w)u,v (∂y/∂w)u,v (∂z/∂w)u,v

∣∣∣∣∣∣
,

as long as (f, g, h) is jointly one-to-one (or lose to it).
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6.7 Polar oordinates

Polar oordinates are a widely used example. (See Setions 2.8�2.10 if you need to review how these work,

espeially in 3 dimensions.) In 2 dimensions, using x = r cos θ and y = r sin θ,

dx ∧ dy = (cos θ dr − r sin θ dθ) ∧ (sin θ dr + r cos θ dθ)

= cos θ sin θ (0) + r cos2 θ (dr ∧ dθ)− r sin2 θ (−dr ∧ dθ)− r2 sin θ cos θ (0)

= (r cos2 θ + r sin2 θ) dr ∧ dθ = r dr ∧ dθ,

so

|dx ∧ dy| = |r| |dr ∧ dθ| = r |dr ∧ dθ|

as long as we only use oordinates where r ≥ 0 (whih is always possible). In 3 dimensions, throwing in z
gives ylindrial oordinates:

|dx ∧ dy ∧ dz| = |r| |dz ∧ dr ∧ dθ| = r |dz ∧ dr ∧ dθ|.

Then swithing from (z, r) to (ρ, φ) in exatly the same way that polar oordinates swith from (x, y)
to (r, θ) (so z = ρ cosφ and r = ρ sinφ) gives spherial oordinates:

|dx ∧ dy ∧ dz| = |r| |ρ| |dρ ∧ dφ ∧ dθ| = ρ2 |sinφ| |dρ ∧ dφ ∧ dθ| = ρ2 sinφ |dρ ∧ dφ ∧ dθ|

if r ≥ 0 and ρ ≥ 0. (Sine r = ρ sinφ, if r ≥ 0 and ρ ≥ 0, then sinφ ≥ 0 too.)

These must all be used with restritions on the allowed values of the polar oordinates, in order for

the hange of variables to be one-to-one (mostly). The usual hoies are r ≥ 0, 0 ≤ θ ≤ 2π, ρ ≥ 0, and 0 ≤
φ ≤ π. (These are onsistent, sine r = ρ sinφ ≥ 0 when ρ ≥ 0 and 0 ≤ φ ≤ π.) If you don t use r ≥ 0 and

ρ ≥ 0, then you need more absolute values in the formulas, and 0 ≤ φ ≤ π is the only good hoie for φ
(sine it produes φ = asin (r/ρ) when ρ 6= 0), but people sometimes use −π ≤ θ ≤ π or −π/2 ≤ θ ≤ 3π/2
instead of 0 ≤ θ ≤ 2π, espeially when integrating over a region that doesn t go all of the way around.

Any hoie a ≤ θ ≤ b is valid as long as b− a = 2π. In other words, if you want the map (g, h) from (r, θ)
to (x, y) to be one-to-one (or lose to it), then you an t simply use g(x, y) = r cos θ and h(x, y) = r sin θ,
beause that is far from one-to-one; instead, you must use g(x, y) = r cos θ for r ≥ 0, 0 ≤ θ ≤ 2π, and
h(x, y) = r sin θ for r ≥ 0, 0 ≤ θ ≤ 2π, or something else with similar restritions.

Whatever you use for θ, there is overlap where θ omes bak to where it started, sine sin a = sin b
and cos a = cos b when b− a = 2π (and θ only appears in those forms). However, this is ontained with-

in a single line in 2 dimensions and ontained within a single plane in 3 dimensions, whih doesn t a�et

the value of any integral. Besides this, all values of θ produe the same result when r = 0, but again, this
is ontained within a single line in 2 dimensions and ontained within a single plane in 3 dimensions. (It

looks even lower in dimension in retangular oordinates, a point in the (x, y)-plane and a line in (x, y, z)-
spae, but the dimensions that matter are in the (r, θ)-plane and in (z, r, θ)-spae.) Similarly, all values

of φ produe the same result when ρ = 0, but this is ontained within a single plane (in (ρ, φ, θ)-spae).
Therefore,

w
(x,y)∈R

f(x, y) |dx ∧ dy| =
w

(r cos θ,r sin θ)∈R,

r≥0, 0≤θ≤2π

f(r cos θ, r sin θ) r |dr ∧ dθ|;

also, w
(x,y,z)∈R

f(x, y, z) |dx ∧ dy ∧ dz| =
w

(r cos θ,r sin θ,z)∈R,
r≥0, 0≤θ≤2π

f(r cos θ, r sin θ, z) r |dz ∧ dr ∧ dθ|;

�nally,

w
(x,y,z)∈R

f(x, y, z) |dx ∧ dy ∧ dz|

=
w

(ρ sinφ cos θ,ρ sinφ sin θ,ρ cosφ)∈R,
ρ≥0, 0≤φ≤π, 0≤θ≤2π

f(ρ sinφ cos θ, ρ cosφ sin θ, ρ cosφ) ρ2 sinφ |dρ ∧ dφ ∧ dθ|.
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The textbook has these same formulas in Setions 14.4 and 14.7, but it derives them by geometri argu-

ments instead of by alulating them. (It does alulate them in Setion 14.8, although it uses the Jao-

bian determinant instead of the wedge produt.)

The restritions on polar oordinates give us some default bounds on the integrals; in 2 dimensions,

an iterated integral in polar oordinates usually looks like

w 2π

θ=0

w ···

r=0
· · · r dr dθ,

with the upper bound on r as the only bound with no default. However, this is not always orret, sine

the ondition that (r cos θ, r sin θ) ∈ R ould always restrit the variables even further. Integrals in ylin-

drial oordinates usually look similar, exept that there will be an integral with respet to z in there as

well (and there are no default bounds on z). Finally, integrals in spherial oordinates usually look like

w 2π

θ=0

w π

φ=0

w ···

ρ=0
· · · ρ sinφdρ dφdθ,

with only one bound (out of a potential six) to �nd; but again, not always.
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7 Integration on surfaes

Just as you an integrate a di�erential 1-form (the ordinary kind without the wedge produt) on an ori-

ented urve, so you an integrate a di�erential 2-form (two 1-forms multiplied together by the wedge

produt or an expression built out of suh produts) on an oriented surfae. (Similarly, you an integrate

a di�erential 3-form on an oriented region of spae, and so on for higher rank forms in spaes of higher di-

mension, but we re not doing any of that exept for the volume integrals that we already overed in Chap-

ter 6.)

Similarly, just as you an integrate a vetor �eld along an oriented urve by taking a dot produt with

dr to get a di�erential 1-form and you an also integrate a vetor �eld aross a pseudooriented urve by

taking a ross produt with dr to get a di�erential pseudo-1-form (and then reintepreting this as an honest

di�erential 1-form on an oriented urve), so you an integrate a vetor �eld aross a pseudooriented sur-

fae by taking a dot produt with dS to get a di�erential pseudo-2-form (and then reintepreting this as an

honest di�erential 2-form on an oriented surfae).

So now I need to explain how to do that.

7.1 Parametrizing surfaes

Just as you use 1 parameter (often alled t) to parametrize a urve, so you use 2 variables (often alled

u and v) to parametrize a surfae. For example, on the surfae of the unit sphere (the sphere of radius 1
entred at (x, y, z) = (0, 0, 0)), we an use spherial oordinates with ρ = 1, so that

x = r cos θ = ρ sinφ cos θ = sinφ cos θ,

y = r sin θ = ρ sinφ sin θ = sinφ sin θ, and

z = ρ cos θ = cos θ.

That is, φ and θ are the parameters. (You an all them u and v instead, but it s onvenient to all them

by more familiar names when possible.) Stritly speaking, the parametrization should also indiate the

range of values taken by the parameters; in this ase,

0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.

Now I have made this sphere into a parametrized surfae (in 3-dimensional spae).

In general, you an use φ and θ as parameters whenever the surfae an be desribed by giving ρ as

a funtion of φ and θ. (In the example above, that funtion was the onstant funtion with value 1.) Be-

sides using spherial oordinates, ylindrial oordinates are also often useful for parametrization. Most of-

ten, you ll use r and θ as the parameters, but sometimes you ll use z and θ; in any ase, you ll need a way

to express the other variable as a funtion of the two that you re using as parameters. Then using x =
r cos θ and y = r sin θ, you have x, y, and z all given as funtions of the parameters. Finally, if you an ex-

press z as a funtion of x and y, then you an use x and y themselves as the parameters. (You ould also

use x and z or y and z, as long as the missing variable is given as a funtion of the two that you use.)

While most examples will use familiar oordinates as the parameters, in general, so long as you have

P = (x, y, z) given as a point-valued funtion of two variables u and v, then the range of this funtion is a

parametrized surfae. For purposes of integrals, this funtion should ideally be one-to-one, but as long

as the overlap is ontained within a few lines in the (u, v)-plane, then it won t a�et the value of any inte-

grals. (This is the same ondition as for hange of variables in a double integral.) In the ase of ylindrial

oordinates, the overlap is when θ is 0 or 2π, or (if r is being used as a parameter) when r = 0; but these
are ontained within lines. In the ase of spherial oordinates, the overlap is when θ is 0 or 2π again,

when φ = 0, or when φ = π; again, these are ontained within lines. So ylindrial and spherial oordi-

nates are always aeptable for integrals. (With retangular oordinates, there is no overlap, so they are

de�nitely aeptable.)
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7.2 Orienting surfaes

In the ase of a urve, there are two ways to go along the urve, giving two orientations. In the ase of a

surfae, there are many ways to go along it, but if you start going in some diretion, then you an turn

from that diretion in one way or the other; these give the two orientations of the surfae. (Atually,

not every surfae an be oriented; a M�obius strip is a famous example of a surfae that annot be oriented

ontinuously everywhere. However, any parametrized surfae an be broken into piees on whih it an

be oriented, so it is possible to do some integrals on unorientable surfaes, as long as they are integrals

whose values don t depend on the orientation. Surfae area and other integrals of salar �elds, disussed in

Setion 7.6 starting on page 70 below, are examples of these.)

A di�erential form suh as du ∧ dv mathes the orientation of a surfae if moving in the diretion in

whih u inreases and then turning in the diretion in whih v inreases mathes the surfae s orientation.

For example, the (x, y)-plane an be oriented lokwise or ounterlokwise; dx ∧ dy mathes the ounter-

lokwise orientation (if (x, y) is a ounterlokwise oordinate system as usual), while dy ∧ dx mathes

the lokwise orientation.

It s often easier to think of a pseudoorientation of a surfae, whih (in a 3-dimensional spae) is

a diretion aross the surfae. The textbook never refers diretly to orientations of surfaes, but only to

pseudoorientations, whih it (onfusingly) alls `orientations'. However, you an swith between orienta-

tions and pseudoorientations using the right-hand rule: if you url the �ngers of your right hand in the

diretion of turning indiated by an orientation, then your thumb will point in the diretion of rossing in-

diated by the orresponding pseudoorientation. So the textbook applies this right-hand rule whenever it

needs an orientation but really has a pseudoorientation.

7.3 De�ning surfae integrals

As with other de�nitions of integrals, people never use this diretly if they an help it, and you ll never

need to use it to solve any of the problems. But for the reord, here it is.

So, suppose that you have a di�erential 2-form α written using the variables P = (x, y, z) and their

di�erentials, and an oriented surfae in (x, y, z)-spae, given by some parametrization funtion S (so that

P = (x, y, z) = S(u, v) on the surfae) whose domain is a ompat region R. Then we an try to inte-

grate α along the surfae, by de�ning the integral

w
P=S(u,v)

α.

To form a Riemann sum to approximate this integral, divide the region R into n triangles, pik one

vertex of eah triangle, and let vk and wk (where k = 1, 2, . . . , n ounts the triangles) be the vetors (in

the ambient (x, y, z)-spae) from that vertex to the other two verties; selet whih is vk and whih is wk

so that, when you turn from vk to wk, this mathes the orientation of the surfae. Finally, tag this parti-

tion with a point ck within eah triangle. The Riemann sum is

n∑

k=1

α|P=S(ck),
dP=uk,vk

.

If you require the lengths of all of the sides of the triangles to all be less than δ and take the limit of all

suh Riemann sums as δ → 0+, then the value of the integral is de�ned to be this limit, if it exists.

There is a theorem that this limit does exist, at least if α is pieewise ontinuous and S is pieewise

ontinuously di�erentiable (and sometimes otherwise); I don t know a nie proof of this diretly, but you

an prove that it exists beause the pratial alulation method in Setion 7.4 on the next page works.

Similarly, there is now a theorem that the value of this integral does not depend on the parametrization of

the surfae, only the orientation.
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7.4 Calulating integrals

The pratial method of evaluating an integral along a surfae is to pik any onvenient parametrization

(preferably one that is ontinuously di�erentiable) and put everything in terms of those parameters.

For example, I ll integrate z dx ∧ dy on the top half of the unit sphere, oriented to turn lokwise

when viewed from above the sphere. I ll use the parametrization given on page 67 using spherial oor-

dinates:

x = sinφ cos θ,

y = sinφ sin θ,

z = cosφ.

Sine I only want the top half of the sphere, I use

0 ≤ φ ≤ π

2
, 0 ≤ θ ≤ 2π.

Now I di�erentiate the parametrization:

dx = cosφ cos θ dφ− sinφ sin θ dθ,

dy = cosφ sin θ dφ+ sinφ cos θ dθ,

dz = − sinφdφ.

Then

dx ∧ dy = cosφ sinφ cos2 θ dφ ∧ dθ − sinφ cosφ sin2 θ dθ ∧ dφ = sinφ cosφdφ ∧ dθ.

(Remember that dφ ∧ dφ and dθ ∧ dθ are 0, so that half of the terms immediately vanish, and that dθ ∧
dφ = −dφ ∧ dθ, so that the other two terms an be ombined into one.) Finally,

z dx ∧ dy = sinφ cos2 φdφ ∧ dθ.

So, I am basially looking at w
0≤φ≤π/2,
0≤θ≤2π

sinφ cos2 φdφdθ,

but I still need to think about the orientation. I really have dφ ∧ dθ rather than dφdθ, and this mathes

an orientation in whih I turn from a diretion in whih φ inreases to a diretion in whih θ inreases.

But this appears ounterlokwise from above, while the orientation of the surfae is lokwise from above.

To �x this, I ould rewrite the form to use dθ ∧ dφ, or equivalently put in a minus sign wherever dφ ∧ dθ
appears. So my real integral is

w 2π

θ=0

w π/2

φ=0
(− sinφ cos2 φ) dφdθ =

w 2π

θ=0

Å
−1

3

ã
dθ = −2

3
π.

You should be able to visualize this example geometrially well enough to see that the answer would

have to be negative. Sine dx ∧ dy mathes an orientation in whih you turn from a diretion in whih

x inreases to a diretion in whih y inreases, whih appears ounterlokwise from above, while the ori-

entation is supposed to be lokwise from above, the fator dx ∧ dy will always ontribute something neg-

ative. The fator z, on the other hand, will always ontribute something positive, sine z is always posi-

tive on the top half of the sphere. So, the produt z dx ∧ dy will always be negative, so the overall integral

must also be negative.
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In this way, you an integrate any ontinuous di�erential 2-form on any ompat surfae with a on-

tinuously di�erentiable parametrization, beause this proess will always leave you with a ontinuous dou-

ble integral to do. In ase you like formulas, if x = f(u, v), y = g(u, v), and z = h(u, v), then

dx =
∂x

∂u
du +

∂x

∂v
dv = D1f(u, v) du+D2f(u, v) dv,

dy =
∂y

∂u
du +

∂y

∂v
dv = D1g(u, v) du+D2g(u, v) dv, and

dz =
∂z

∂u
du +

∂z

∂v
dv = D1h(u, v) du+D2h(u, v) dv,

so

dy ∧ dz =

Å
∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u

ã
du ∧ dv =

(
D1g(u, v)D2h(u, v)−D2g(u, v)D1h(u, v)

)
du ∧ dv,

dz ∧ dx =

Å
∂z

∂u

∂x

∂v
− ∂z

∂v

∂x

∂u

ã
du ∧ dv =

(
D1h(u, v)D2f(u, v)−D2h(u, v)D1f(u, v)

)
du ∧ dv, and

dx ∧ dy =

Å
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

ã
du ∧ dv =

(
D1f(u, v)D2g(u, v)−D2f(u, v)D1g(u, v)

)
du ∧ dv;

thus, the most general exterior 2-form U dy ∧ dz + V dz ∧ dx+W dx ∧ dy in 3 dimensions, where U =
F (x, y, z), V = G(x, y, z), and W = H(x, y, z), beomes

Å
U
∂y

∂u

∂z

∂v
− U

∂y

∂v

∂z

∂u
+ V

∂z

∂u

∂x

∂v
− V

∂z

∂v

∂x

∂u
+W

∂x

∂u

∂y

∂v
−W

∂x

∂v

∂y

∂u

ã
du ∧ dv

= F
(
f(u, v), g(u, v), h(u, v)

)(
D1g(u, v)D2h(u, v)−D2g(u, v)D1h(u, v)

)
du ∧ dv

+G
(
f(u, v), g(u, v), h(u, v)

)(
D1h(u, v)D2f(u, v)−D2h(u, v)D1f(u, v)

)
du ∧ dv

+H
(
f(u, v), g(u, v), h(u, v)

)(
D1f(u, v)D2g(u, v)−D2f(u, v)D1g(u, v)

)
du ∧ dv.

But I prefer to alulate dx, dy, and dz diretly and apply the wedge produts to the results, rather than

to use any of these formulas.

7.5 Integrating vetor �elds

In the textbook, you ll never be diretly given di�erential forms to integrate (other than 1-forms to in-

tegrate along urves). In some of Setion 15.6 and muh of Setions 15.7 and 15.8 of that book, you in-

tegrate a vetor �eld aross a surfae; to integrate the vetor �eld F, you integrate the di�erential form

F(x, y, z) · d̄S, where d̄S is the oriented surfae element

d̄S =
1

2
dP ×̂dP = 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 = ∂P

∂u
× ∂P

∂v
du ∧ dv.

(People often write d̄S as simply dS, although there is no quantity S that it is the di�erential of.) Here,

P = (x, y, z) as usual; the book prefers r = 〈x, y, z〉, but sine dP = dr, partial derivatives of P and of r

are the same, so we an equally well write

d̄S =
1

2
dr×̂dr = 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 = ∂r

∂u
× ∂r

∂v
du ∧ dv.

(When I write ×̂ between vetor-valued di�erential forms, I mean to multiply them as vetors using the

ross produt and as di�erential forms using the wedge produt. Note that you get two minus signs when

swithing the order of multipliation, so the result of multiplying dP = dr by itself is not zero but rather

twie something, and that something is what we mean by d̄S.)
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The middle formula for d̄S (the one without P or r in it) requires the use of the right-hand rule for

the ross produt. This is beause d̄S is really a pseudoform, meaning that it hanges sign if you swith

between right-hand and left-hand rules. (Reall that multiplying vetors with the ross produt similar-

ly results in a pseudovetor, also alled an axial vetor.) In this way, it makes sense to integrate a vetor

�eld through a pseudooriented surfae; if you onsistently use the left-hand rule instead of the right-hand

rule, then the �nal result will be the same.

(The textbook never writes d̄S or even dS; instead, it writes n d̄σ, or rather n dσ. But d̄σ is just

‖d̄S‖, the magnitude of d̄S; and n is just

”̄dS, a unit vetor in the diretion of d̄S, that is a unit vetor

perpendiular to the surfae pointing in the diretion given by its pseudoorientation. So n dσ is really just

a ompliated way of saying d̄S. To atually alulate n and d̄σ is a waste of time if d̄S is all that you

really want.)

So for example, integrating the vetor �eld F(x, y, z) = 〈0, 0, z〉 = zk through the top half of the unit

sphere pseudooriented downwards is the same as integrating the rank-2 di�erential form

F(x, y, z) · d̄S = 〈0, 0, z〉 · 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 = 0 + 0 + z dx ∧ dy = z dx ∧ dy

on that hemisphere oriented lokwise when viewed from above, beause turning the �ngers of your right

hand lokwise results in your thumb pointing downwards. In the example in Setion 7.4 on page 69, I

alulated this integral to be −2/3π), and that is exatly how I would �nish this problem.

Sine the vetor �eld that we integrated points upwards while the surfae through whih we integrat-

ed is pseudooriented downwards, you should expet the �nal result to be negative; guessing the sign of the

integral ahead of time like this an help you to avoid mistakes with orientation. (If you used the left-hand

rule instead, then you d turn the �ngers of your left hand ounterlokwise to make your left thumb point

downwards, but you d also use 〈dz ∧ dy, dx ∧ dz, dy ∧ dx〉 for d̄S, and the �nal result would be the same.)

In ase you like formulas, if F(x, y, z) = 〈U, V,W 〉 = 〈F (x, y, z), G(x, y, z), H(x, y, z)〉, with x = f(u, v),
y = g(u, v), and z = h(u, v), then you an use the formula at the end of Setion 7.4 on page 70. But I pre-

fer to remember only to use F(x, y, z) · d̄S, where d̄S = 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉, and then the rules for

taking di�erentials and wedge produts will make everything ome out orretly.

7.6 Integrating salar �elds

In Setion 15.5 and some of Setion 15.6 of the textbook, you integrate a salar �eld (that is a funtion

of 3 variables) on a surfae; to integrate the salar �eld f , you integrate the di�erential form f(x, y, z) d̄σ,
where

d̄σ = ‖d̄S‖ =
»
(dy ∧ dz)

2
+ (dz ∧ dx)

2
+ (dx ∧ dy)

2
=

∥∥∥∥
∂r

∂u
× ∂r

∂v

∥∥∥∥ |du ∧ dv|.

Beause the di�erentials only appear inside a vetor magnitude, square, or absolute value (depending on

whih version you look at), orientation is irrelevant; instead, simply make sure that all parameters are in-

reasing in the iterated integral.

So for example, integrating the salar �eld f(x, y, z) = z on the top half of the unit sphere is the same

as integrating the rank-2 di�erential form

f(x, y, z) d̄σ = z
»
(dy ∧ dz)2 + (dz ∧ dx)2 + (dx ∧ dy)2

on that hemisphere with either orientation. To work out that expression using the parameters φ and θ, I
an use dx ∧ dy = sinφ cosφdφ ∧ dθ from earlier, but I also need to �nd dy ∧ dz and dz ∧ dx. I already
have the individual di�erentials from page 69, so

dy ∧ dz = (cosφ sin θ dφ+ sinφ cos θ dθ) ∧ (− sinφdφ) = sin2 φ cos θ dφ ∧ dθ

and

dz ∧ dx = (− sinφdφ) ∧ (cosφ cos θ dφ− sinφ sin θ dθ) = sin2 φ sin θ dφ ∧ dθ.
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Therefore, I am integrating

cosφ
»

sin4 φ cos2 θ (dφ ∧ dθ)
2
+ sin4 φ sin2 θ (dθ ∧ dφ)

2
+ sin2 φ cos2 φ (dφ ∧ dθ)

2

= cosφ
»

sin4 φ (dφ ∧ dθ)
2
+ sin2 φ cos2 φ (dφ ∧ dθ)

2
= cosφ

»
sin2 φ (dφ ∧ dθ)

2
= sinφ cosφ |dφ ∧ dθ|.

(Here, I simpli�ed

√
sin2 φ to sinφ rather than to |sinφ|, sine 0 ≤ φ ≤ π, so that sinφ ≥ 0.)

The value of the integral is now

w 2π

θ=0

w π/2

φ=0
sinφ cosφdφdθ =

w 2π

θ=0

1

2
dθ = π.

(You should expet the integral to be positive, sine z is always positive on the top hemisphere.) We don t

have to think about orientation when setting up this iterated integral, sine the integrand involves |dφ ∧ dθ|
rather than dφ ∧ dθ itself; just make sure that the bounds are set up on the integrals so that eah variable

is inreasing.

If instead I simply want the area of this surfae, then I an simply integrate d̄σ itself, whih gives

w 2π

θ=0

w π/2

φ=0
sinφdφdθ =

w 2π

θ=0
dθ = 2π.

(And that is indeed the area of a hemisphere of radius 1.)
Again, in ase you like formulas, if x = f(u, v), y = g(u, v), and z = h(u, v), then

d̄σ =

√Å
∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u

ã2
+

Å
∂z

∂u

∂x

∂v
− ∂z

∂v

∂x

∂u

ã2
+

Å
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

ã2
|du ∧ dv|

=

ŒÖ (
D1g(u, v)D2h(u, v)−D2g(u, v)D1h(u, v)

)2

+
(
D1h(u, v)D2f(u, v)−D2h(u, v)D1f(u, v)

)2

+
(
D1f(u, v)D2g(u, v)−D2f(u, v)D1g(u, v)

)2

è

|du ∧ dv|.

But again, I prefer not to use this formula.

However, in the ase where x and y are the parameters, that is where x = u, y = v, and z = h(u, v) =
h(x, y), then this simpli�es to

d̄σ =
»
(∂z/∂x)2 + (∂z/∂y)2 + 1 d̄A =

»
‖∇h(x, y)‖2 + 1 d̄A

(where d̄A = |dx ∧ dy|), and this omes up fairly often (whenever the surfae of integration is the graph of

a di�erentiable funtion h).
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8 The Stokes theorems

The Stokes theorems generalize the (seond) Fundamental Theorem of Calulus. The basi idea is that

the integral of some di�erential form α on some manifold M (that is a urve, surfae, et) is equal to the

integral of an antidi�erential of α on the boundary of M .

In the ase of one-variable Calulus, the theorem is

w b

x=a
f(x) dx = F (b)− F (a)

whenever f = F ′
. Here, f(x) dx is the di�erential form α; one of its antidi�erentials is F (x) (beause the

di�erential of F (x) is d
(
F (x)

)
= F ′(x) dx = f(x) dx = α). Also, the manifold M is the portion of the

number line where x lies between a and b, thought of as a urve oriented from x = a to x = b; its bound-
ary onsists of the points x = a and x = b, with x = a ounted negatively and x = b positively. In plae

of integrating the antidi�erential F (x) on these points, we evaluate it at those points and add the results

(whih really involves a subtration sine one of them is ounted negatively).

In higher dimensions, the situation is in some ways easier to understand, beause the boundary will

be something more than just a few points, something that we re more used to talking about integrating

on. Spei�ally, the boundary of a ompat surfae (whether a region in the 2-dimensional plane or a

urved surfae in 3-dimensional spae) is a urve or a few urves, and the boundary of a ompat region

in 3-dimensional spae is a surfae or a few surfaes. Still, if you an think of evaluating a quantity as in-

tegrating it at a point, then all versions of the theorem an be expressed in the same way.

This is how the general Stokes Theorem looks:

w
∂M

α =
w
M
d ∧ α.

Here, α is a di�erential form of a ertain kind, alled an exterior di�erential form, of some rank p, while
M is an oriented manifold of dimension p+ 1 (so a 1-dimensional urve if p = 0, a 2-dimensional surfae

if p = 1, et). Also, ∂M is the boundary of M , whih is an oriented manifold of dimension p (or perhaps

a hain of several suh manifolds); you know the symbol `∂' as used for partial derivatives, but it is also

used to mean a boundary. Finally, d ∧ α is a kind of di�erential of α, alled the exterior di�erential, whih

I will explain next.

8.1 Exterior forms and exterior di�erentials

You may reall from Chapter 7 that a di�erential form of rank p (or p-form for short) may be onstruted

by taking p ordinary di�erential forms (those of rank 1) and multiplying them together using exterior mul-

tipliation to form their wedge produt ; more generally, if you apply operations suh as addition to suh

expressions, then this still leaves you with a p-form. This an then be evaluated at a point along p vetors.

So for example, 2y dx ∧ dy − 2xdy ∧ dz is formed by taking the wedge produt of 2y dx and dy, giving the

2-form 2y dx ∧ dy, taking the wedge produt of 2xdy and dz, giving the 2-form 2xdy ∧ dz, and subtrat-

ing these, giving the 2-form 2y dx ∧ dy − 2xdy ∧ dz. This an now be evaluated at a point (x, y, z) = P0

along two di�erent vetors 〈dx, dy, dz〉 = v1 and 〈dx, dy, dz〉 = v2, by the method desribed in Setion 7.4

(although you never atually need to perform suh an evaluation in this ourse).

You may also reall from Setion 4.4 that the di�erential of an ordinary quantity u (whih we an

now think of as a di�erential form of rank 0) is a 1-form, whih you an evaluate at a point P0 along a

vetor v0 by onsidering a parametrized urve through P0 with v0 as its veloity vetor there and seeing

how fast u hanges along that urve. Spei�ally, if you evaluate u at various points on the urve, then the

result is a funtion of the parameter of the urve, and the derivative of this funtion (at the value of the

parameter that gives the point P0 and the tangent vetor v0) is the result of evaluating du at P0 along v0.

We an ombine these ideas to de�ne the exterior di�erential of a p-form α. This will be a (p+ 1)-
form, so it an be evaluated at a point P0 along p+ 1 vetors v0, v1, . . . , and vp. To evaluate this, on-

sider a parametrized urve through P0 with v0 as its veloity vetor there. You an evaluate α at any

point on that urve along the same p vetors v1, v2, . . . , and vp to get a number that is a funtion of

the parameter of the urve. The derivative of this funtion (at the value of the parameter that gives the
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point P0 and the tangent vetor v0) is sort of the result of evaluating d ∧ α at P0 along v0, v1, . . . , and vp.

I say `sort of', beause you now you need to onsider a urve through P0 whose veloity vetor is v1 rather

than v0 and do the same thing, evaluating α at a point on the urve along v0, v2, v3, . . . , and vp. Con-

tinue in this way until you ve gone along a urve whose tangent vetor is vp. Now add up all of those re-

sults where you used a urve whose tangent vetor was vi for an even value of i, then subtrat from this

all of the results where you used a urve whose tangent vetor was vi for an odd value of i, and �nal-

ly divide all of this by p+ 1. Now you really have the result of evaluating d ∧ α at P0 along v0, v1, . . . ,

and vp.

Again, you re not atually going to need to do any suh evaluation in this ourse. However, this def-

inition leads to some fairly simple rules for alulating exterior di�erentials, and this will be useful. Here

are some of the most important rules:

• d ∧ u = du when u is a di�erentiable 0-form;

• d ∧ du = 0 when u is a twie-di�erentiable 0-form;

• d ∧ (α+ β) = d ∧ α+ d ∧ β when α and β are di�erentiable p-forms (for any whole number p);
• d ∧ (uα) = du ∧ α+ u d ∧ α when u is a di�erentiable 0-form and α is a di�erentiable p-form (for any

whole number p);
• d ∧ (α ∧ β) = (d ∧ α) ∧ β − α ∧ (d ∧ β) when α is a di�erentiable 1-form and β is a di�erentiable p-
form (for any whole number p).

In words: the exterior di�erential of an ordinary quantity is its ordinary di�erential that we ve been using

all along (beause the de�nition is the same in this ase); the exterior di�erential of one of these di�eren-

tials is zero (ultimately beause of the equality of mixed partial derivatives); the exterior di�erential obeys

the Sum Rule (beause every proess in the de�nition obeys a Sum Rule); the exterior di�erential obeys a

kind of Produt Rule when multiplying by a 0-form, in whih the di�erentials are multiplied by the wedge

produt; and the exterior di�erential of a wedge produt with a 1-form obeys a kind of Produt Rule with

a minus sign in the term where the di�erential operator and the 1-form swith order. (These are all spe-

ial ases of more ompliated rules that apply to di�erential forms of any rank, exept that the �rst rule

really does only apply to 0-forms and the Sum Rule doesn t get any more ompliated.)

Besides the Sum Rule (whih should be very easy to use), the main rule that you ll really use is a

ombination of all of the others:

• d ∧ (u dv ∧ dw ∧ · · ·) = du ∧ dv ∧ dw ∧ · · ·.
This will allow you to easily take the exterior di�erential of any di�erential form whih is a sum of expres-

sions like this. A di�erential form that is suh a sum is alled an exterior di�erential form, and it is

these that we are most interested in. For example, 2y dx ∧ dy − 2xdy ∧ dz is an exterior di�erential 2-
form, and its exterior di�erential is

d ∧ (2y dx ∧ dy − 2xdy ∧ dz) = d(2y) ∧ dx ∧ dy − d(2x) ∧ dy ∧ dz

= 2dy ∧ dx ∧ dy − 2 dx ∧ dy ∧ dz = −2 dx ∧ dy ∧ dz

(beause the �rst term, whih multiplies dy by itself, is zero). I ve written out this whole setion for om-

pleteness, but the only thing that s really useful in this ourse is how to perform alulations like the one

above.

A note on notation: Besides simple 1-forms, the exterior di�erential forms are the most widely stud-

ied di�erential forms; and while the exterior di�erential is not the only way to di�erentiate these, it is by

far the most widely studied way. For this reason, it s ommon to leave out the symbol `∧' in the wedge

produt and extremely ommon to leave out that symbol in the exterior di�erential. So the previous ex-

ample may be written

d(2y dxdy − 2xdy dz) = −2 dxdy dz.

The main reason why I m not using this simpli�ed notation myself is that we do oasionally multiply dif-

ferential forms using ordinary multipliation (rather than exterior multpliation) in expressions suh as

d̄s =
√
dx2 + dy2; here, dx2

really means the 1-form dxdx, not the 2-form dx ∧ dx, whih would be ze-

ro. (The formula for d̄σ in Setion 7.6 on page 71 even mixes wedge produts with squares. There are al-

so similar expressions, used in the geometry of surfaes and in general relativity for example, that have a
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dxdy term under the square root, so it s not enough just to treat exponents di�erently.) But if you read

other material on exterior di�erential forms, then it s very likely that some or all of the wedges will be left

out.

8.2 Cohomology

One very important property of the exterior di�erential is that

d ∧ (d ∧ α) = 0

whenever α is a twie-di�erentiable exterior form of any rank; that is, an exterior di�erential of an exterior

di�erential is zero. The reason for this is the equality of mixed partial derivatives; if you write out the left-

hand side expliitly in terms of partial derivatives of expressions appearing in α (whih is very ompliated

but an be done), then you will see that everything anels.

This �ts in very niely with the Stokes Theorem; if you apply it twie, then you get

w
∂∂M

α =
w
∂M

d ∧ α =
w
M
d ∧ d ∧ α;

the right-hand side is zero beause of the previous fat, while the left-hand side is zero beause everything

in the boundary of a boundary anels. (For example, a urve bounding a surfae must end where it be-

gan; similarly, a surfae bounding a three-dimensional region must lose in on itself and have no bounding

urves.)

A manifold (or hain of manifolds) is alled losed if it has no boundary (but this is di�erent from

being a losed set of points), and an exterior form is alled exat if it s the exterior di�erential of some

other exterior form. So the integral of an exat form on a losed manifold must be zero. This is where the

terms `losed' and `exat' ome from (in this ontext), but people also turn them around and use them

this way: a hain of manifolds is exat if it s the boundary of some other manifold, and an exterior form

is losed if its exterior di�erential is zero. Then the integral of a losed form on an exat manifold is also

zero.

Beause ∂∂M = 0 and d ∧ d ∧ α = 0, anything exat must also be losed. Conversely, a losed mani-

fold in Rn
must be exat, beause you an simply �ll it in to get something of one higher dimension that

it bounds. Similarly, a losed exterior form in n variables is exat if it is de�ned for all possible values of

those variables. However, if it is sometimes unde�ned, then it might not be, in partiular if there are any

gaps or holes in its domain.

It s therefore possible to study the topology of a manifold (roughly, those features of its shape that

annot be hanged by ontinuously strething or otherwise distorting it) by studying the exterior forms

de�ned on it. The existene of losed but non-exat forms shows the existene of holes or gaps in the man-

ifold, and the rank of the form in question even shows what kind of hole or gap. (The hole in a doughnut

is di�erent from both the gap between a pair of separated blobs and the hollow inside a sphere; these ome

from losed but non-exat forms of ranks 1, 0, and 2, respetively. This study of the topology of a shape

by identifying and lassifying holes in it is alled ohomology (or spei�ally de Rham ohomology if you

use losed but non-exat exterior di�erential forms to �nd the holes).

We won t really be doing any ohomology in this ourse; all that you really need to know are these

fats:

• An exat di�erential form, if it is di�erentiable, is also losed;

• A losed di�erential form, if it is de�ned everywhere, is also exat.

The speial ase of this for 0-forms has already ome up, in the disussion of the Fundamental Theorem of

Calulus in Setion 5.4.
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8.3 Green

′
s Theorem

Suppose that R is a ompat region in the 2-dimensional plane, and suppose that the boundary of R is

a urve C. (It s not true that every ompat region has a urve for its boundary; Green s Theorem ap-

plies only to regions whose boundaries may be parametrized as a urve or a hain of urves.) Pseudoori-

ent the urve C in the diretion from within R to outside of R, and turn this into an orientation following

the right-hand rule (so that you turn ounterlokwise from the pseudoorientation to the orientation). In

other words, C is oriented ounterlokwise overall, with the region R on the left as you travel along its

boundary C.
If f and g are funtions of 2 variables (salar �elds) that are ontinuously di�erentiable at least on all

of R, then w
(x,y)∈C

(f(x, y) dx+ g(x, y) dy) =
w
(x,y)∈R

(
D1g(x, y)−D2f(x, y)

)
d̄A.

Equivalently, if u = f(x, y) and v = g(x, y) are variable quantities that are ontinuously di�erentiable at

least whenever (x, y) ∈ R, then

w
(x,y)∈C

(u dx+ v dy) =
w
(x,y)∈R

Å
∂v

∂x
− ∂u

∂y

ã
d̄A.

This result is Green s Theorem.

To see how this is a speial ase of the general Stokes Theorem, look at the exterior di�erential of

u dx+ v dy:

d ∧ (u dx+ v dy) = du ∧ dx+ dv ∧ dy =

Å
∂u

∂x
dx+

∂u

∂y
dy

ã
∧ dx+

Å
∂v

∂x
dx+

∂v

∂y
dy

ã
∧ dy

= 0 +
∂u

∂y
(−dx ∧ dy) +

∂v

∂x
dx ∧ dy + 0 =

Å
∂v

∂x
− ∂u

∂y

ã
dx ∧ dy.

Sine dx ∧ dy orresponds to the ounterlokwise orientation of the region R, the boundary urve C must

also be oriented ounterlokwise around R.
If F is a ontinuously di�erentiable vetor �eld in 2 dimensions, then we an integrate both F(x, y) ·

dr and F(x, y)× dr on a urve suh as C. These will orrespond to two di�erent ways of di�erentiating F.

Writing F = 〈M,N〉,

F(x, y) · dr = 〈M(x, y), N(x, y)〉 · 〈dx, dy〉 = M(x, y) dx+N(x, y) dy,

so (using f = M and g = N) Green s Theorem says that

w
C
F(x, y) · dr =

w
R
(∇× F)(x, y) dA,

where ∇× F is a salar �eld alled the url of F: ∇× F = 〈D1, D2〉 × 〈M,N〉 = D1N −D2M ; or more

expliitly,

(∇× F)(x, y) =
∂
(
N(x, y)

)

∂x
−

∂
(
M(x, y)

)

∂y
.

On the other hand,

F(x, y)× dr = 〈M(x, y), N(x, y)〉 × 〈dx, dy〉 = M(x, y) dy −N(x, y) dx,

so (now using f = −N and g = M) Green s Theorem also says that

w
C
F(x, y)× dr =

w
R
∇ ·F(x, y) dA,
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where ∇ ·F is a salar �eld alled the divergene of F: ∇ ·F = 〈D1, D2〉 · 〈M,N〉 = D1M +D2N ; or

more expliitly,

(∇ ·F)(x, y) =
∂
(
M(x, y)

)

∂x
+

∂
(
N(x, y)

)

∂y
.

These are both forms of Green s Theorem; thought of as theorems about vetor �elds, the �rst of these

generalizes to Stokes s Theorem in Setion 8.4 below, while the last of these generalizes to Gauss s Theo-

rem in Setion 8.5. The fat that d ∧ du = 0, where u = f(x, y), an be intepreted to say that ∇×∇f = 0.
If the boundary of R onsists of several urves, then we an still write Green s Theorem as

w
∂R

(u dx+ v dy) =
w
R

Å
∂v

∂x
− ∂u

∂y

ã
dA

(or similarly for any of the versions involving salar or vetor �elds), where you integrate along the bound-

ary ∂R by integrating along eah urve in that boundary and adding the integrals. But now only the out-

ermost urve of the boundary is oriented lokwise overall; the inner urves are oriented lokwise instead.

This still mathes the orientation of R, beause an inner urve surrounds a hole in R rather than R itself.

You an also write the integral on the left-hand side as

w
C0

(u dx+ v dy)−
w
C1

(u dx+ v dy)−
w
C2

(u dx+ v dy)− · · · ,

where C0 is the outermost urve surrounding R and C1, C2, et are the inner urves surrounding the holes,

if you orient them all ounterlokwise this time. (This still assumes that R onsists of a single piee; if R
onsists of more than one disonneted piee, then there will be more than one outer urve being added.)

The proof of Green s Theorem essentially relies on showing that it is true on a small triangular region,

say

R = {x, y | x ≥ 0, y ≥ 0, x+ y ≤ 1}.

The boundary of this region is a triangle, running from (x, y) = (0, 0) to (1, 0) to (0, 1) bak to (0, 0), whih
I will divide into three line segments, eah parametrized by x or y itself. Then the integral along the bound-

ary is

w 1

x=0
f(x, 0) dx+

w 0

x=1
f(x, 1− x) dx+

w 1

y=0
g(1− y, y) dy +

w 0

y=1
g(0, y) dy

=
w 1

x=0

(
f(x, 0)− f(x, 1− x)

)
dx+

w 1

y=0

(
g(1− y, y)− g(0, y)

)
dy.

Meanwhile, the integral on the triangular region itself is

w 1

y=0

w 1−y

x=0

∂
(
g(x, y)

)

∂x
dxdy −

w 1

x=0

w 1−x

y=0

∂
(
f(x, y)

)

∂y
dy dx

=
w 1

y=0

(
g(1− y, y)− g(0, y)

)
dy −

w 1

x=0

(
f(x, 1 − x)− f(x, 0)

)
dx.

So, Green s Theorem is de�nitely true for this triangular region. But any triangle looks like this under an

appropriate hange of oordinates, and the area integral on any region R is a limit of the sum of the inte-

grals on suh triangular regions. Meanwhile, the orresponding sums of integrals on the triangles bound-

aries mostly anel, as the same line segment is integrated along in �rst one diretion and then the other;

only the integrals along the line segments near the boundary of R survive, and the limit of this is the inte-

gral along the boundary itself. This is ultimately why all of these theorems apply only to exterior di�eren-

tial forms; there would be no anellation for something like |u dx+ v dy|.
(You an similarly prove the general Stokes Theorem �in any rank and any dimension� all at one,

if you take are to keep areful trak of everything, but this is a lot of detail when written out in full.)
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8.4 Stokes

′
s Theorem

While Green s Theorem is about a region in the plane, Stokes s Theorem is about a urved surfae in spae.

(Stokes s Theorem is also alled the Kelvin�Stokes Theorem or the Curl Theorem; the general Stokes The-

orem is named after this partiular ase.)

If F = 〈M,N,P 〉 is a ontinuously di�erentiable vetor �eld in 3 dimensions and S is a ompat sur-

fae in 3 dimensions with boundary urve C, then Stokes s Theorem says that

w
C
F(x, y, z) · dr =

w
S
(∇× F)(x, y, z) · dS,

where ∇× F is a vetor �eld alled the url of F: ∇× F = 〈D1, D2, D3〉 × 〈M,N,P 〉 =
〈D2P −D3N,D3M −D1P ,D1N −D2M〉; or more expliitly,

(∇× F)(x, y, z)

=

Æ
∂
(
P (x, y, z)

)

∂y
−

∂
(
N(x, y, z)

)

∂z
,
∂
(
M(x, y, z)

)

∂z
−

∂
(
P (x, y, z)

)

∂x
,
∂
(
N(x, y, z)

)

∂x
−

∂
(
M(x, y, z)

)

∂y

∏
.

Both the surfae S and its boundary C are oriented here, and these orientations must math; that

is, the diretion in whih you travel along C, as given by its orientation, must agree with the diretion in

whih you turn along S, as given by its orientation, near the boundary. We usually think of a surfae as

being pseudooriented, that is given with a diretion aross it instead of diretions along it, relating this

to the orientation of its boundary with the right-hand rule; but the formula for the url also relies on the

right-hand rule, so you ould just as easily use the left-hand rule for both.

As with Green s Theorem, this generalizes to a surfae whose boundary onsists of several urves, but

it won t apply to a surfae whose boundary annot be parametrized as urves at all. On the other hand, a

parametrized surfae ould ross itself (just as a urve an), and Stokes s Theorem an ontinue to apply

in that ase. What ultimately matters is the region in the (u, v)-plane that the parametrization transforms

into the atual surfae; if the boundary of that region an be parametrized as urves, then Stokes s Theo-

rem applies to the resulting surfae. This also shows one way to prove Stokes s Theorem: by reduing it to

Green s Theorem in the (u, v)-plane.
This lassial Stokes s Theorem is a speial ase of the general Stokes Theorem: writing u for M(x, y, z),

v for N(x, y, z), and w for P (x, y, z),

d ∧ (F(x, y, z) · dr) = d ∧ (u dx+ v dy + w dz) = du ∧ dx+ dv ∧ dy + dw ∧ dz

=

Å
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz

ã
∧ dx+

Å
∂v

∂x
dx+

∂v

∂y
dy +

∂v

∂z
dz

ã
∧ dy +

Å
∂w

∂x
dx+

∂w

∂y
dy +

∂w

∂z
dz

ã
∧ dz

= 0 +
∂u

∂y
(−dx ∧ dy) +

∂u

∂z
dz ∧ dx+

∂v

∂x
dx ∧ dy + 0 +

∂v

∂z
(−dy ∧ dz) +

∂w

∂x
(−dz ∧ dx) +

∂w

∂y
dy ∧ dz + 0

=

Å
∂w

∂y
− ∂v

∂z

ã
dy ∧ dz +

Å
∂u

∂z
− ∂w

∂x

ã
dz ∧ dx+

Å
∂v

∂x
− ∂u

∂y

ã
dx ∧ dy = (∇× F)(x, y, z) · dS.

The fat that d ∧ du = 0, when u = f(x, y, z), beomes the result that

∇×∇f = 0.

Conversely, if ∇× F = 0, then F must be the gradient of some salar �eld f , unless there must be a hole

in the domain of F similar to the hole through a doughnut.
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8.5 Gauss

′
s Theorem

While Green s Theorem is about a region in the plane, Gauss s Theorem is about a region in spae. (Gauss s

Theorem is also alled the Ostrogradsky�Gauss Theorem or the Divergene Theorem.)

If G = 〈M,N,P 〉 is a ontinuously di�erentiable vetor �eld in 3 dimensions and D is a ompat re-

gion in 3 dimensions with boundary surfae S, then Gauss s Theorem says that

w
S
G(x, y, z) · dS =

w
D
(∇ ·G)(x, y, z) dV ,

where ∇ ·G is a salar �eld alled the divergene of G: ∇ ·G = 〈D1, D2, D3〉 · 〈M,N,P 〉 = D1M +D2N +
D3P ; or more expliitly,

(∇ ·G)(x, y, z) =
∂
(
M(x, y, z)

)

∂x
+

∂
(
N(x, y, z)

)

∂y
+

∂
(
P (x, y, z)

)

∂z
.

If you give the region D a right-handed orientation, then the orientation on the boundary surfae S is

ounterlokwise as viewed from outside the region, whih in turn orresponds under the right-hand rule

to a pseudoorientation from inside to outside. You an just as easily use the left hand for everything, but

the pseudoorientation on S will always be outwards.

As with Green s Theorem, this generalizes to a region whose boundary onsists of several surfaes,

but it won t apply to a region whose boundary annot be parametrized as surfaes at all. Unlike Stokes s

Theorem, Gauss s Theorem annot be redued to Green s Theorem using a parametrization; however, the

proof of Gauss s Theorem is quite similar to the proof of Green s Theorem, only with an extra dimension:

the integral along the boundary of a tetrahedron splits into four piees, three with one term eah and one

with three terms, so six terms grouped into three pairs, while the integral on the tetrahedron splits into

three terms whose partial integrals lead to the same six expressions.

Gauss s Theorem is also a speial ase of the Stokes Theorem: writing u for M(x, y, z), v for N(x, y, z),
and w for P (x, y, z),

d ∧ (G(x, y, z) · dS) = d ∧ (u dy ∧ dz + v dz ∧ dx+ w dx ∧ dy)

= du ∧ dy ∧ dz + dv ∧ dz ∧ dx+ dw ∧ dx ∧ dy

=

Å
∂u

∂x
dx ∧ dy ∧ dz + 0 + 0

ã
+

Å
0 +

∂v

∂y
dx ∧ dy ∧ dz + 0

ã
+

Å
0 + 0 +

∂w

∂z
dx ∧ dy ∧ dz

ã

=

Å
∂u

∂x
+

∂v

∂y
+

∂w

∂z

ã
dx ∧ dy ∧ dz = (∇ ·G)(x, y, z) dV .

The fat that d ∧ (d ∧ α) = 0, when α = F(x, y, z) · dr, beomes the result that

∇ · ∇× F = 0.

Conversely, if ∇ ·G = 0, then G must be the url of some vetor �eld F, unless there is a hollow in the

domain of G similar to the hollow inside a sphere.
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