1 Simplify the following expressions, writing them as monomoials in standard form. (Show at least one intermediate step for each.)
$a\left(-3 p^{7} q^{2}\right)^{4}$
Treat each kind of factor (constant, p, q) separately; distribute the outer exponents to each factor inside; a negative number raised to the power of an even number becomes positive; raise a power to a power by multiplying exponents.

$$
\left(-3 p^{7} q^{2}\right)^{4}=(-3)^{4}\left(p^{7}\right)^{4}\left(q^{2}\right)^{4}=3^{4} p^{7 \cdot 4} q^{2 \cdot 4}=81 p^{28} q^{8} .
$$

$b\left(10 a^{3}\right)\left(-4 a^{7}\right)$
Treat each kind of factor (constant, a) separately; multiply powers by adding exponents.

$$
\left(10 a^{3}\right)\left(-4 a^{7}\right)=(10 \cdot-4) a^{3+7}=-40 a^{10}
$$

2 Consider the expression

$$
\frac{-27 x y^{3} z^{4}}{18 x^{4} y^{3} z}
$$

a Simplify this expression. (Show at least one intermediate step.)
Treat each kind of factor (constant, x, y, z) separately; divide powers by subtracting exponents; a missing exponent is 1 ; an exponent of 0 means that a variable doesn't have to appear; a negative exponent becomes a positive exponent in the denominator.

$$
\frac{-27 x y^{3} z^{4}}{18 x^{4} y^{3} z}=-\frac{27}{18} \frac{x^{1}}{x^{4}} \frac{y^{3}}{y^{3}} \frac{z^{4}}{z^{1}}=-\frac{3}{2} x^{1-4} y^{3-3} z^{4-1}=-\frac{3}{2} x^{-3} y^{0} z^{3}=-\frac{3 z^{3}}{2 x^{3}}
$$

b Extra credit: Evaluate the original expression when $x=1, y=2$, and $z=0$. Then evaluate the simplified expression when $x=1, y=2$, and $z=0$. Are these results the same?

For the original expression,

$$
\frac{-27 x y^{3} z^{4}}{18 x^{4} y^{3} z}=\frac{-27(1)(2)^{3}(0)^{4}}{18(1)^{4}(2)^{3}(0)}=\frac{0}{0}
$$

which is undefined. For the simplified expression,

$$
-\frac{3 z^{3}}{2 x^{3}}=-\frac{3(0)^{3}}{2(1)^{3}}=-\frac{0}{2}=0 .
$$

These are different. To avoid this, a more complete way to express the simplified form is

$$
-\frac{3 z^{3}}{2 x^{3}} \text { for } y, z \neq 0
$$

