Evaluate (work out the value of) these expressions. Show at least one intermediate step for each part (perhaps writing the problem out with repeated multiplication or division).
$1(-8)^{2}$
Directly,

$$
(-8)^{2}=(-8) \cdot(-8)=64
$$

Alternatively, since 2 is even,

$$
(-8)^{2}=8^{2}=64
$$

$2\left(\frac{3}{4}\right)^{3}$
Directly,

$$
\left(\frac{3}{4}\right)^{3}=\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}=\frac{27}{64}
$$

Alternatively,

$$
\left(\frac{3}{4}\right)^{3}=\frac{3^{3}}{4^{3}}=\frac{27}{64}
$$

310^{-3}
Directly,

$$
10^{-3}=1 \div 10 \div 10 \div 10=\frac{1}{1000}
$$

Alternatively,

$$
10^{-3}=\left(\frac{1}{10}\right)^{3}=\frac{1}{1000}
$$

or

$$
10^{-3}=\frac{1}{10^{3}}=\frac{1}{1000}
$$

