1 Consider the polynomial

$$
2 x^{3}+3 x^{2}-x+6
$$

You can think of this polynomial as

$$
2 x^{3}+3 x^{2}+(-1) x^{1}+6 x^{0} .
$$

That may make the answers below more obvious.
a How many terms does this expression have?
The terms are separated by addition and subtraction, so there are 4 terms.
b List the terms.
When terms are separated by subtraction, the minus sign is part of the term that comes after it. Therefore, the terms are $2 x^{3}, 3 x^{2},-x$, and 6 .
c For each term, give its coefficient.
If there's no number in front of a term, then the missing number is 1 . A minus sign in front of a term also belongs with the coefficient. Therefore, the coefficients are $2,3,-1$, and 6 .
d Extra credit: For each term, give its degree.
If there's no exponent on a variable, then the missing exponent is 1 . If the variable doesn't appear at all, then the degree on it is 0 . Therefore, the degrees are $3,2,1$, and 0 .

2 Simplify the polynomial expression

$$
\left(p-p^{3}+2\right)+\left(6-2 p^{2}+p^{3}\right)
$$

and put it in standard form. (Show at least one intermediate step.)
To add these polynomials, I combine the p^{3}-terms, combine the p^{2}-terms, combine the p-terms, and combine the constant terms:

$$
\begin{aligned}
\left(p-p^{3}+2\right)+\left(6-2 p^{2}+p^{3}\right) & =1 p+(-1) p^{3}+2+6+(-2) p^{2}+1 p^{3} \\
& =(-1+1) p^{3}+(-2) p^{2}+1 p+(2+6) \\
& =0 p^{3}+(-2) p^{2}+1 p+8 \\
& =-2 p^{2}+p+8 .
\end{aligned}
$$

