Solve the following equations; show at least one intermediate step for each. Also check your answers, at least enough to avoid extraneous solutions; show what numerical calculations you make to check.

1 $\frac{8}{x+4}=\frac{12}{x-3}$
Since this equation is simply an equation between two fractions, I'll solve it by cross multiplying:

$$
\begin{aligned}
\frac{8}{x+4} & =\frac{12}{x-3} ; \\
8(x-3) & =12(x+4) ; \\
8 x-24 & =12 x+48 ; \\
-4 x-24 & =48 ; \\
-4 x & =72 ; \\
x & =-18 .
\end{aligned}
$$

Neither $x+4=-18+4=-14$ nor $x-3=-18-3=-21$ is zero, so this solution should work.
$2 \frac{5}{2}+\frac{1}{x}=4$
There are two ways to do this problem, and I'll show both.
One way is to simplify both sides of the equation, turning it into a cross multiplication problem like Problem 1:

$$
\frac{5}{2}+\frac{1}{x}=\frac{5 x}{2 x}+\frac{2}{2 x}=\frac{5 x+2}{2 x}
$$

and

$$
4=\frac{4}{1}
$$

so I get

$$
\begin{aligned}
\frac{5}{2}+\frac{1}{x} & =4 ; \\
\frac{5 x+2}{2 x} & =\frac{4}{1} ; \\
(5 x+2) 1 & =4(2 x) ; \\
5 x+2 & =8 x ; \\
-3 x+2 & =0 ; \\
-3 x & =-2 ; \\
x & =\frac{2}{3} .
\end{aligned}
$$

Another way is to find a common multiple of the denominators of the terms and multiply both sides of the equation by it:

$$
\begin{aligned}
\frac{5}{2}+\frac{1}{x} & =4 \\
2 x\left(\frac{5}{2}+\frac{1}{x}\right) & =2 x(4) \\
\frac{2 \cdot 5 x}{2}+\frac{2 x}{x} & =8 x \\
5 x+2 & =8 x \\
-3 x+2 & =0 \\
-3 x & =-2 \\
x & =\frac{2}{3}
\end{aligned}
$$

In either case, neither 2 nor $x=2 / 3$ is zero, so this solution should work.
$3 \frac{6}{x^{2}}=\frac{2}{x}$
As in Problem 1, I'll solve this equation by cross multiplying:

$$
\begin{gathered}
\frac{6}{x^{2}}=\frac{2}{x} \\
6 x=2 x^{2} ; \\
-2 x^{2}+6 x=0 \\
-2 x(x-3)=0 \\
-2 x=0 \text { or } x-3=0 ; \\
x=0 \text { or } x=3 .
\end{gathered}
$$

If $x=0$, then $x^{2}=(0)^{2}=0$ is zero (and also $x=0$), so this solution is extraneous; if $x=3$, then neither $x^{2}=(3)^{2}=9$ nor $x=3$ is zero, so this solution should work. Therefore,

$$
x=3
$$

