Consider the equation

$$
y=x^{2}+3 .
$$

1 Is the point $(-2,-1)$ on the graph of this equation? (Show what calculation you make to decide.)
If $x=-2$ and $y=-1$, then the left-hand-side is

$$
y=-1
$$

while the right-hand-side is

$$
x^{2}+3=(-2)^{2}+3=4+3=7 .
$$

Since the equation $-1=7$ is false, this point is not on the graph.
2 Make a table of values to graph this equation. (Include at least three values of x, at least one positive and at least one negative.)

I'll actually do five values of x, the integers from -2 to 2 :
$x, \quad y=x^{2}+3$;
$-2, \quad(-2)^{2}+3=7$;
$-1, \quad(-1)^{2}+3=4 ;$
$0, \quad(0)^{2}+3=3$;
1, $\quad(1)^{2}+3=4$;
2 , $\quad(2)^{2}+3=7$.
3 Extra credit: Draw a graph of this equation. (Be sure to label the scale.)
I made this graph using Wolfram Alpha (http://www.wolframalpha.com/) as Plot $[y=x \wedge 2+3$, $\{x$, -3, 3\}, \{y, -1, 8\}].

