1 Let F be the function such that

$$
F(z)=\frac{2 z+1}{z-5}
$$

for every possible real number z. What is the domain of F ? (Show at least one intermediate step.)
The operations involved in the formula for F are addition, subtraction, multiplication, and division. Most of these are always defined, but division by zero is undefined. Since the formula asks us to divide by $z-5$, this cannot be zero. Thus:

$$
\begin{aligned}
z-5 & \neq 0 \\
z & \neq 5 .
\end{aligned}
$$

This is enough; but a fully proper answer would be either of the following:

$$
\begin{aligned}
& \operatorname{dom} F=\{z \mid z \neq 5\}, \\
& \operatorname{dom} F=(-\infty, 5) \cup(5, \infty) .
\end{aligned}
$$

(The latter of these uses interval notation, which is probably more trouble than it's worth here, although it's often nice when you get the answer from a graph.)

2 Let f be the function whose graph appears in Exercise 8.4.9 of the textbook.
a What is $f(6)$?
Since $(6,2)$ is on the graph of f,

$$
f(6)=2
$$

b What is the solution to the equation $f(x)=3$?
Since $(-3,3)$ is on the graph of $f, f(-3)=3$; furthermore, the only point $(x, 3)$ on the graph is $(-3,3)$. Therefore, the solution to the equation is simply

$$
x=-3 .
$$

