Simplify the following expressions.
$1 \sqrt{36+64}$
First add $36+64$ to get 100 ; then since $100=10^{2}$ (and $10 \geq 0$), $\sqrt{100}=10$. In summary,

$$
\sqrt{36+64}=\sqrt{100}=10
$$

$2 \sqrt{(2 x+3)^{2}}$
Notice that $(2 x+3)^{2}=(-2 x-3)^{2}$. The answer might be either $2 x+3$ or $-2 x-3$, depending on which is positive (or at least not negative). We can't know this without knowing something about what x is, but we do know that the answer is the absolute value:

$$
\sqrt{(2 x+3)^{2}}=|2 x+3| .
$$

$3 \sqrt[5]{\frac{1}{32}}$
Since $(1 / 2)^{5}=1 / 2^{5}=1 / 32$,

$$
\sqrt[5]{\frac{1}{32}}=\frac{1}{2}
$$

$4(-27)^{1 / 3}$
First, $(-27)^{1 / 3}=\sqrt[3]{-27}$. Next, $-27=-3^{3}=(-3)^{3}$, so $\sqrt[3]{-27}=-3$. (It doesn't matter that $-3<0$, since the index 3 is odd.) In summary,

$$
(-27)^{1 / 3}=\sqrt[3]{-27}=-3
$$

