Simplify each expression. (Show at least one intermediate step for each.)
$17 \sqrt{10}-6 \sqrt{3}$
Since $10=2 \cdot 5$ with no nontrivial square factors, $\sqrt{10}$ cannot be reduced; similarly, $\sqrt{3}$ cannot be reduced. Since $10 \neq 3$, the terms cannot be combined. Therefore, this is already simplified:

$$
7 \sqrt{10}-6 \sqrt{3}
$$

$2(2-7 \sqrt{3})(5+4 \sqrt{3})$
As with a polynomial, multiply every term by every term, and remember that $(\sqrt{3})^{2}=3$:

$$
\begin{aligned}
(2-7 \sqrt{3})(5+4 \sqrt{3}) & =(2)(5)+(2)(4 \sqrt{3})+(-7 \sqrt{3})(5)+(-7 \sqrt{3})(4 \sqrt{3})=10+8 \sqrt{3}-35 \sqrt{3}-28(\sqrt{3})^{2} \\
& =10+8 \sqrt{3}-35 \sqrt{3}-28(3)=10+8 \sqrt{3}-35 \sqrt{3}-84=-74-27 \sqrt{3} .
\end{aligned}
$$

$3 \sqrt[3]{8 z^{4}}-2 z \sqrt[3]{-27 z}+\sqrt[3]{125 z}$
I reduce each radical, then collect like terms:

$$
\sqrt[3]{8 z^{4}}-2 z \sqrt[3]{-27 z}+\sqrt[3]{125 z}=2 z \sqrt[3]{z}-2 z(-3 \sqrt[3]{z})+5 \sqrt[3]{z}=2 z \sqrt[3]{z}+6 z \sqrt[3]{z}+5 \sqrt[3]{z}=8 z \sqrt[3]{z}+5 \sqrt[3]{z}
$$

