Factor these polynomials completely. Show at least one intermediate step in each part.
$13 x^{2}-2 x-8$
The terms are in standard order and have no common factor. The coefficients on the first and last terms multiply to $3 \cdot-8=-24$, so I want two numbers that multiply to -24 and add to -2 . Here are my attempts:

$$
\begin{aligned}
1+-24 & =-23 \\
2+-12 & =-10 \\
3+-8 & =-5 \\
4+-6 & =-2
\end{aligned}
$$

So the numbers that I want are 4 and -6 ; I split up $-2 x$ as $4 x-6 x$ and factor by grouping:

$$
3 x^{2}-2 x-8=3 x^{2}+4 x-6 x-8=x(3 x+4)-2(3 x+4)=(x-2)(3 x+4)
$$

$281 m^{2}-16 n^{2}$
The terms are in standard order and have no common factor. Since $81 m^{2}=(9 m)^{2}$ and $16 n^{2}=(4 n)^{2}$, I can factor this as a difference of squares:

$$
81 m^{2}-16 n^{2}=(9 m-4 n)(9 m+4 n)
$$

