Factor these polynomials completely. Show at least one intermediate step in each part.
$1-45 x^{2}+3 x y+6 y^{2}$
The terms are in standard order. Since all of the coefficients are multiples of 3 and the first coefficient is negative, I can factor out -3 :

$$
-3\left(15 x^{2}-x y-2 y^{2}\right)
$$

Now since $15 \cdot-2=-30$, I want two numbers that multiply to -30 and add to -1 :

$$
\begin{aligned}
1+-30 & =-29 \\
2+-15 & =-13 ; \\
3+-10 & =-7 \\
5+-6 & =-1
\end{aligned}
$$

Now I split up the middle term and factor by grouping:

$$
15 x^{2}-x y-2 y^{2}=15 x^{2}+5 x y-6 x y-2 y^{2}=5 x(3 x+y)-2 y(3 x+y)=(5 x-2 y)(3 x+y) .
$$

Therefore, the final result is

$$
3(5 x-2 y)(3 x+y) .
$$

$275 x^{2}+90 x+27$
Again I can factor out -3 :

$$
3\left(25 x^{2}+30 x+9\right)
$$

Now there are two ways to continue:
If I notice that $25 x^{2}=(5 x)^{2}$ and $9=3^{2}$, then I might be suspicious that $30 x=2(5 x)(3)$, which happens to be true. Then I recognise $25 x^{2}+30 x+9$ as a perfect square, specifically the square of $5 x+3$. This gives me the answer immediately:

$$
3(5 x+3)^{2} .
$$

If I don't notice this, then I can continue as usual; since $25 \cdot 9=225$, I want two numbers that multiply to 225 and add to 30 :

$$
\begin{array}{r}
1+225=226 \\
3+75=78 \\
5+45=50 \\
15+15=30
\end{array}
$$

(Since my two numbers are the same, this also tells me that I have a perfect square, so I could go back and do that method now. But here I'll continue as usual.) So,

$$
25 x^{2}+30 x+9=25 x^{2}+15 x+15 x+9=5 x(5 x+3)+3(5 x+3)=(5 x+3)(5 x+3)=(5 x+3)^{2} .
$$

Therefore, the final result is

$$
3(5 x+3)^{2} .
$$

$3 x^{4}-1$
The terms are in standard order and have no common factor. Since there are two terms, I look for a difference of squares of cubes. Since $x^{4}=\left(x^{2}\right)^{2}$ and $1=1^{2}$, I have a difference of squares:

$$
x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right) .
$$

The first factor is again a difference of squares, so I can factor further:

$$
(x-1)(x+1)\left(x^{2}+1\right) .
$$

A sum of squares (with no common factor) is prime, so this is the final result.

