Simplify the following expressions, producing a rational expression (or a polynomial) in either expanded or factored form (your choice). Show at least one intermediate step for each.
$\mathbf{1} \frac{p^{2}-9}{5} \cdot \frac{25 p}{2 p-6}$

$$
\frac{p^{2}-9}{5} \cdot \frac{25 p}{2 p-6}=\frac{(p-3)(p+3)}{5} \cdot \frac{5^{2} p}{2(p-3)}=\frac{5^{2}(p-3)(p+3)}{2 \cdot 5(p-3)}=\frac{5(p+3)}{2} .
$$

You could also leave the answer in expanded form as $\frac{5 p+15}{2}$; since it's a polynomial, you could also leave it in factored form as $\frac{5}{2}(p+3)$ or in expanded form as $\frac{5}{2} p+\frac{15}{2}$.
$2 \frac{x^{2}-9}{x^{2}-16} \div \frac{x^{2}-x-12}{x^{2}+x-12}$

$$
\begin{aligned}
\frac{x^{2}-9}{x^{2}-16} \div \frac{x^{2}-x-12}{x^{2}+x-12} & =\frac{x^{2}-9}{x^{2}-16} \cdot \frac{x^{2}+x-12}{x^{2}-x-12}=\frac{(x-3)(x+3)}{(x-4)(x+4)} \cdot \frac{(x-3)(x+4)}{(x-4)(x+3)} \\
& =\frac{(x-3)^{2}(x+3)(x+4)}{(x-4)^{2}(x+3)(x+4)}=\frac{(x-3)^{2}}{(x-4)^{2}}
\end{aligned}
$$

You could also leave the answer in expanded form as $\frac{x^{2}-6 x+9}{x^{2}-8 x+16}$.

