Simplify the following expressions, producing a rational expression (or a polynomial) in either expanded or factored form (your choice). Show at least two intermediate steps for each.

1 $\frac{5}{x-4}+\frac{3}{x+2}$

$$
\begin{aligned}
\frac{5}{x-4}+\frac{3}{x+2} & =\frac{5(x+2)}{(x-4)(x+2)}+\frac{3(x-4)}{(x-4)(x+2)}=\frac{5 x+10}{(x-4)(x+2)}+\frac{3 x-12}{(x-4)(x+2)} \\
& =\frac{(5 x+10)+(3 x-12)}{(x-4)(x+2)}=\frac{8 x-2}{(x-4)(x+2)}=\frac{2(4 x-1)}{(x-4)(x+2)}
\end{aligned}
$$

You could also leave the answer in expanded form as $\frac{8 x-2}{x^{2}-2 x-8}$.
$2 \frac{1}{x^{2}+5 x}+\frac{1}{x^{2}-5 x}$

$$
\begin{aligned}
\frac{1}{x^{2}+5 x}+\frac{1}{x^{2}-5 x} & =\frac{1}{x(x+5)}+\frac{1}{x(x-5)}=\frac{x-5}{x(x-5)(x+5)}+\frac{x+5}{x(x-5)(x+5)} \\
& =\frac{(x-5)+(x+5)}{x(x-5)(x+5)}=\frac{2 x}{x(x-5)(x+5)}=\frac{2}{(x-5)(x+5)} .
\end{aligned}
$$

You could also leave the answer in expanded form as $\frac{2}{x^{2}-25}$.

3 $\frac{5}{x}-\frac{3}{x-4}$

$$
\frac{5}{x}-\frac{3}{x-4}=\frac{5(x-4)}{x(x-4)}+\frac{-3 x}{x(x-4)}=\frac{5 x-20}{x(x-4)}+\frac{-3 x}{x(x-4)}=\frac{(5 x-20)+(-3 x)}{x(x-4)}=\frac{2 x-20}{x(x-4)}=\frac{2(x-10)}{x(x-4)}
$$

You could also leave the answer in expanded form as $\frac{2 x-20}{x^{2}-4 x}$.

