^{n}√0 = 0.^{n}√1 = 1.^{n}√*a**b*=^{n}√*a*⋅^{n}√*b*.^{n}√*a*/*b*=^{n}√*a*÷^{n}√*b*.^{1}√*a*=*a*.^{n}√^{m}√*a*=^{mn}√*a*.^{n}√*a*^{n}= |*a*| if*n*is even;^{n}√*a*^{n}=*a*if*n*is odd.^{n}√*a*^{mn}= |*a*|^{m}if*n*is even;^{n}√*a*^{mn}=*a*^{m}if*n*is odd.^{mn}√*a*^{n}=^{m}√|*a*| if*n*is even;^{mn}√*a*^{n}=^{m}√*a*if*n*is odd.

Or download the video: WebM format, Ogg Vorbis format, MPEG-4 format. Here are some trickier examples that the book does using rational exponents, but I'll do them directly using rules for roots:

Or download the video: WebM format, Ogg Vorbis format, MPEG-4 format.

Go back to the course homepage.

This web page and the files linked from it were written in 2015 and 2016 by Toby Bartels, last edited on 2016 July 18. Toby reserves no legal rights to them. The linked files were produced using GIMP and recordMyDesktop and converted from Ogg Vorbis to other formats by online-convert.com. The permanent URI of this web page is

`http://tobybartels.name/MATH-1100/2016SU/rootrules/`

.