Consider the graph of

$$
x^{2}+y-9=0
$$

and answer the following questions about it. (Either show what equations you use to answer these questions or draw a graph in which the answers can clearly be seen.)

1 Is the graph symmetric with respect to the x-axis?
I change y to $-y$, simplify, and compare with the original:

$$
\begin{array}{r}
x^{2}+(-y)-9=0 \\
x^{2}-y-9=0 .
\end{array}
$$

This is different from the original, so the graph is not symmetric with respect to the x-axis.
2 Is the graph symmetric with respect to the y-axis?
This time I change x to $-x$:

$$
\begin{array}{r}
(-x)^{2}+y-9=0 \\
x^{2}+y-9=0
\end{array}
$$

This is the same as the original, so the graph is symmetric with respect to the y-axis.
3 Is the graph symmetric with respect to the origin?
This time I change both:

$$
\begin{aligned}
(-x)^{2}+(-y)-9 & =0 ; \\
x^{2}-y-9 & =0 .
\end{aligned}
$$

This is the different from the original, so the graph is not symmetric with respect to the origin.
4 What are the x-intercepts of this graph?
I change y to 0 and solve for x :

$$
\begin{aligned}
x^{2}+(0)-9 & =0 ; \\
x^{2} & =9 ; \\
x & = \pm 3 .
\end{aligned}
$$

Therefore, the x-intercepts are ± 3, or

$$
(3,0),(-3,0) .
$$

5 What are the y-intercepts of this graph?
I change x to 0 and solve for y :

$$
\begin{aligned}
(0)^{2}+y-9 & =0 \\
y & =9
\end{aligned}
$$

Therefore, the only y-intercept is 9 , or

$$
(0,9)
$$

