Consider the graph of the quadratic function $f(x)=-2 x^{2}+2 x-3$.
Note: I have $a=-2, b=2$, and $c=-3$.
1 Find the vertex of this graph. (Show what numerical calculations you make or what equation you solve.)
First,

$$
h=-\frac{b}{2 a}=-\frac{2}{2(-2)}=\frac{1}{2} .
$$

Next,

$$
k=f(h)=f\left(\frac{1}{2}\right)=-2\left(\frac{1}{2}\right)^{2}+2\left(\frac{1}{2}\right)-3=-\frac{5}{2} .
$$

Therefore, the vertex is

$$
\left(\frac{1}{2},-\frac{5}{2}\right) .
$$

2 Find the intercepts of this graph. (Show what numerical calculations you make or what equation you solve.)

Since $c=-3$, the vertical intercept is

$$
(0,-3) .
$$

Since a and k have the same sign (both negative), there are no horizontal intercepts.
3 Graph this function; mark and label at least three points on the graph.
The obvious points to mark are $(h, k)=(1 / 2,-5 / 2),(0, c)=(0,-3)$ (the vertical intercept), and $(2 h, c)=$ $(1,-3)$. I can't get the graphing program that I use to mark these, however.

(This graph was produced by Wolfram Alpha. There should also be arrows at the ends of the graph.)

