1 Break down

$$
\log _{2}\left(\frac{x^{3}}{x-3}\right)
$$

into an expression involving logarithms of the simplest possible arguments. (You may assume that x is positive.)

Division inside the logarithm becomes subtraction outside, and raising to a power inside becomes multiplication by a coefficient outside.

$$
\log _{2}\left(\frac{x^{3}}{x-3}\right)=\log _{2}\left(x^{3}\right)-\log _{2}(x-3)=3 \log _{2} x-\log _{2}(x-3)
$$

Since $x-3$ (and course x) can't be factored, this is as far as I can break it down.

2 Combine

$$
2 \log _{2}(x+1)-\log _{2}(x+3)-\log _{2}(x-1)
$$

into a single logarithm.
Multiplication by a coefficient outside the logarithm becomes raising to a power inside it, addition outside becomes multiplication inside, and subtraction outside becomes division inside.

$$
\begin{aligned}
2 \log _{2}(x+1)-\log _{2}(x+3)-\log _{2}(x-1) & =\log _{2}\left[(x+1)^{2}\right]-\left[\log _{2}(x+3)+\log _{2}(x-1)\right] \\
& =\log _{2}\left[(x+1)^{2}\right]-\log _{2}[(x+3)(x-1)]=\log _{2}\left[\frac{(x+1)^{2}}{(x+3)(x-1)}\right]
\end{aligned}
$$

