Solve each system of equations completely. (Show at least enough work that I can tell which method you're using.)
$1\left\{\begin{aligned} 5 x-y & =21 \\ 2 x+3 y & =-12\end{aligned}\right.$
I'll solve this one by elimination; I multiply the first equation by 3 and then add them both together:

$$
\begin{aligned}
15 x-3 y & =63, \\
+2 x+3 y & =-12 ; \\
\hline 17 x & =51 ; \\
x \quad & =3 .
\end{aligned}
$$

Then I use this result in the first equation to solve for y :

$$
\begin{aligned}
5(3)-y & =21 \\
y & =-7
\end{aligned}
$$

Therefore,

$$
(x, y)=(3,-7) .
$$

$2\left\{\begin{aligned} x+2 y & =4 \\ 2 x+4 y & =8\end{aligned}\right.$
I'll solve this one by substitution, first solving the first equation for x :

$$
\begin{aligned}
x+2 y & =4 \\
x & =-2 y+4 .
\end{aligned}
$$

Now I can try to solve for y :

$$
\begin{aligned}
2(-2 y+4)+4 y & =8 \\
8 & =8
\end{aligned}
$$

This came out as simply a true statement, so there is no unique solution; instead,

$$
x=-2 y+4
$$

is the only result. You could also solve for y and give the answer as

$$
y=-\frac{1}{2} x+2
$$

$\mathbf{3}\left\{\begin{aligned} x-y-z & =1 \\ 2 x+3 y+z & =2 \\ 3 x+2 y & =0\end{aligned}\right.$
I'll solve this one by elimination again; I multiply the last equation by -1 and then add them all together:

$$
\begin{array}{r}
x-y-z=1, \\
2 x+3 y+z=2, \\
+\quad-3 x-2 y=0 \\
\hline 0=3
\end{array}
$$

This statement is false, so there is no solution.

