1 Let f be the function such that

$$
f(x)=3 x^{2}+2 x-4
$$

for every possible real number x. Evaluate or simplify the following. (Show at least one intermediate step for each.)
a $f(1)$
I replace x with -1 (in parentheses) and evaluate:

$$
\begin{aligned}
f(x) & =3 x^{2}+2 x-4 \\
f(-1) & =3(-1)^{2}+2(-1)-4=-3 .
\end{aligned}
$$

b $f(2 x)$
I replace x with $2 x$ (in parentheses) and simplify:

$$
\begin{aligned}
f(x) & =3 x^{2}+2 x-4 \\
f(2 x) & =3(2 x)^{2}+2(2 x)-4=12 x^{2}+4 x-4
\end{aligned}
$$

2 Extra credit. Let g be the function such that

$$
g(x)=\frac{x}{x^{2}-16}
$$

for every possible real number x. What is the domain of g ? (Show at least one intermediate step.)
I can't divide by zero, so

$$
\begin{aligned}
x^{2}-16 & \neq 0 \\
x^{2} & \neq 16 \\
x & \neq \pm 4
\end{aligned}
$$

Therefore, the domain is

$$
\{x \mid x \neq 4, x \neq-4\}=(-\infty,-4) \cup(-4,4) \cup(4, \infty)
$$

3 Let f be the function whose graph is shown in Exercise 3.2.9 of the textbook.
a What is $f(11)$?
Since $(11,1)$ is on the graph,

$$
f(11)=1 \text {. }
$$

b Solve the equation $f(x)=3$.
Since $(0,3)$ and $(4,3)$ are on the graph but no other example of $(x, 3)$ is on the graph,

$$
x=0 \text { or } x=4 .
$$

