1 Let f be the function such that

$$
f(x)=4 x^{3}
$$

for all possible x. Is f even, odd, or neither? (Either show what calculation you make to decide this, or draw a graph that shows your answer.)

First,

$$
f(-x)=4(-x)^{3}=4\left(-x^{3}\right)=-4 x^{3} ;
$$

next,

$$
-f(x)=-\left(4 x^{3}\right)=-4 x^{3} .
$$

These are the same, so f is odd.

2 Let g be the function given by

$$
g(x)=x^{2}-2 .
$$

What is the average rate of change of g from -2 to 1 ? (Show what numerical calculation you make.)
First,

$$
g(-2)=(-2)^{2}-2=4-2=2 ;
$$

next,

$$
g(1)=(1)^{2}-2=1-2=-1 .
$$

Therefore, the average rate of change is

$$
\frac{g(1)-g(-2)}{(1)-(-2)}=\frac{-1-2}{1+2}=\frac{-3}{3}=-1 .
$$

3 Let h be the function shown in Exercises 3.3.11-20 of the textbook.
a How many local maxima does h have?
It has 2 local maxima. (See $(-2,6)$ and $(2,10)$ on the graph.)
b For each local maximum of h, state where it is and what it is.
One local maximum is at -2 ; it is 6 . The other local maximum is at 2 ; it is 10 .

