1 A wire is bent into the shape of a circle. Express the area of the circle as a function of the length of the wire. (Hint: If r is the radius of a circle, then the distance around the circle (its perimeter or circumference) is $2 \pi r$, while the area is πr^{2}.)

Let x be the length of the wire. Then the circumference of the circle is also x, so $x=2 \pi r$, which means that $r=\frac{x}{2 \pi}$. Therefore, the area is $\pi\left(\frac{x}{2 \pi}\right)^{2}=\frac{x^{2}}{4 \pi}$. If A is this area, then

$$
A=\frac{x^{2}}{4 \pi}
$$

2 Consider the points $(3,-4)$ and $(5,4)$ in the cartesian real number plane.
a What is the distance between these points? (Show what numerical calculation you make.)
The distance is

$$
\sqrt{((5)-(3))^{2}+((4)-(-4))^{2}}=\sqrt{(2)^{2}+(8)^{2}}=\sqrt{(4)+(64)}=\sqrt{68}=2 \sqrt{17}
$$

b What is the midpoint between these points? (Show what numerical calculation you make.)
The midpoint is

$$
\left(\frac{(3)+(5)}{2}, \frac{(-4)+(4)}{2}\right)=\left(\frac{8}{2}, \frac{0}{2}\right)=(4,0)
$$

