1 Break down

$$
\log _{2}\left(\frac{x^{3}}{x-3}\right)
$$

into an expression involving logarithms of the simplest possible arguments. (You may assume that x is positive.)

Division inside the logarithm becomes subtraction outside, and raising to a power inside becomes multiplication by a coefficient outside.

$$
\log _{2}\left(\frac{x^{3}}{x-3}\right)=\log _{2}\left(x^{3}\right)-\log _{2}(x-3)=3 \log _{2} x-\log _{2}(x-3)
$$

Since $x-3$ (and course x) can't be factored, this is as far as I can break it down.
2 Combine

$$
2 \log _{2}(x+1)-\log _{2}(x+3)-\log _{2}(x-1)
$$

into a single logarithm.
Multiplication by a coefficient outside the logarithm becomes raising to a power inside it, addition outside becomes multiplication inside, and subtraction outside becomes division inside.

$$
\begin{aligned}
2 \log _{2}(x+1)-\log _{2}(x+3)-\log _{2}(x-1) & =\log _{2}\left[(x+1)^{2}\right]-\left[\log _{2}(x+3)+\log _{2}(x-1)\right] \\
& =\log _{2}\left[(x+1)^{2}\right]-\log _{2}[(x+3)(x-1)]=\log _{2}\left[\frac{(x+1)^{2}}{(x+3)(x-1)}\right] .
\end{aligned}
$$

3 Solve the equation

$$
\log _{2}(x+7)+\log _{2}(x+8)=1 .
$$

(Show at least one intermediate step.) Either leave the answer in exact form or round off to three decimal places.

I combine both sides into a single logarithm, then drop the logarithms:

$$
\begin{aligned}
\log _{2}(x+7)+\log _{2}(x+8) & =1 ; \\
\log _{2}[(x+7)(x+8)] & =\log _{2} 2 ; \\
(x+7)(x+8) & =2 ; \\
x^{2}+15 x+54 & =0 ; \\
x=-9 & \text { or } x=-6 .
\end{aligned}
$$

However, I must check for extraneous solutions; if $x=-9$, then $x+7$ or $x+8$ is negative, and I can't take a logarithm of a negative number. If $x=-6$, however, then $x+7$ and $x+8$ are both positive, so this solution should work. Therefore,

$$
x=-6 .
$$

