### 4.4.3

$a$ The revenue is

$$
R=x p=x\left(-\frac{1}{6} x+100\right)=-\frac{1}{6} x^{2}+100 x
$$

dollars.
$d$ Since $R$ is a quadratic function of $x$ with coefficients $a=-1 / 6, b=100$, and $c=0, R$ is maximised (because $a<0$ ) when $x$ is

$$
h=-\frac{b}{2 a}=-\frac{100}{2(-1 / 6)}=300
$$

Then

$$
R=-\frac{1}{6}(300)^{2}+100(300)=15000
$$

Therefore, sell three hundred items to obtain the maximum revenue of fifteen thousand dollars.
$e$ When $x=300$,

$$
p=-\frac{1}{6}(300)+100=50
$$

so set the price to fifty dollars to maximise revenue. (Then $R=x p=(300)(50)=15000$ again.)
4.4.9 Let $x$ be the distance from the river in metres, and let $y$ be the distance along the river in metres. Then $2 x+y=4000$, so

$$
y=4000-2 x
$$

Next, the area is

$$
A=x y=x(4000-2 x)=-2 x^{2}+4000 x
$$

square metres. Since $A$ is a quadratic function of $x$ with coefficients $a=-2, b=4000$, and $c=0, A$ is maximised (because $a<0$ ) when $x$ is

$$
h=-\frac{b}{2 a}=-\frac{4000}{2(-2)}=1000 .
$$

Then

$$
A=-2(1000)^{2}+4000(1000)=2000000
$$

(Alternatively, $y=4000-2(1000)=2000$, and then $A=x y=(1000)(2000)=2000000$.) Therefore, the maximum area is two million square metres.

