1 Solve the equation

$$
x(x-1)=6 .
$$

(Show at least two intermediate steps.)
I expand the left-hand side, make the right-hand side zero, and factor:

$$
\begin{aligned}
x(x-1) & =6 ; \\
x^{2}-x & =6 \\
x^{2}-x-6 & =0 \\
(x-3)(x+2) & =0 \\
x-3=0 & \text { or } x+2=0 ; \\
x=3 & \text { or } x=-2 .
\end{aligned}
$$

If you like, the solution set for x is $\{-2,3\}$.
2 Solve the inequality

$$
-3 \leq \frac{3 x-4}{2} \leq 6
$$

in the real number system. (Show at least two intermediate steps.)
There are three sides, and I must do the same operations to all of them:

$$
\begin{gathered}
-3 \leq \frac{3 x-4}{2} \leq 6 \\
-6 \leq 3 x-4 \leq 12 \\
-2 \leq 3 x \leq 16 \\
-\frac{2}{3} \leq x \leq \frac{16}{3}
\end{gathered}
$$

If you like, the solution set for x is $[-2 / 3,16 / 3]$.
3 Solve the equation

$$
4 x^{2}-4 x+5=0
$$

in the complex number system. (Show at least enough work that I can tell which method -completing the square, quadratic formula, etc-you used.)

I'll use the quadratic formula, with $a=4, b=-4$, and $c=5$. Then

$$
x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(4)(5)}}{2(4)}=\frac{4 \pm \sqrt{-64}}{8}=\frac{4 \pm 8 \mathrm{i}}{8}=\frac{1}{2} \pm \mathrm{i}
$$

If you like, the solution set for x is $\{1 / 2+\mathrm{i}, 1 / 2-\mathrm{i}\}$.

