1 Solve the equation

$$
\frac{2 x}{3}-\frac{x}{2}=\frac{5}{12}
$$

(Show at least one intermediate step.)
To begin with, I multiply both sides by 12 (a common denominator); after that, it's pretty straightforward.

$$
\begin{aligned}
\frac{2 x}{3}-\frac{x}{2} & =\frac{5}{12} \\
8 x-6 x & =5 ; \\
2 x & =5 ; \\
x & =\frac{5}{2} .
\end{aligned}
$$

If you want the solution set, that's $\{5 / 2\}$.
2 Solve the inequality

$$
-3 \leq \frac{3 x-4}{2} \leq 6
$$

in the real number system. (Show at least two intermediate steps.)
To begin with, I multiply all three sides by 2 , then add 4 , then finally divide by 3 . Since 2 and 3 (the numbers that I'm multiplying and dividing by) are positive, I keep the inequalities in the same direction.

$$
\begin{gathered}
-3 \leq \frac{3 x-4}{2} \leq 6 \\
-6 \leq 3 x-4 \leq 12 \\
-2 \leq 3 x \leq 16 \\
-\frac{2}{3} \leq x \leq \frac{16}{3}
\end{gathered}
$$

If you want the solution set in interval notation, that's $[-2 / 3,16 / 3]$.
3 Solve the equation

$$
4 x^{2}-4 x+5=0
$$

in the complex number system. (Show at least two intermediate steps.)
I'll use the quadratic formula, with $a=4, b=-4$, and $c=5$. Then

$$
x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(4)(5)}}{2(4)}=\frac{4 \pm \sqrt{-64}}{8}=\frac{4 \pm 8 \mathrm{i}}{8}=\frac{1}{2} \pm \mathrm{i} .
$$

If you want the solution set, that's $\{1 / 2+i, 1 / 2-i\}$.

