1 The cost (in dollars) of renting a moving truck for a day is given as a function of the distance driven (in miles) by

$$
C(x)=0.25 x+35 .
$$

a Suppose that you want the cost to be no more than $\$ 100$. What is the maximum distance that you can drive?

The cost must be less than or equal to $\$ 100$; that is, $C(x) \leq 100$:

$$
\begin{aligned}
0.25 x+35 & \leq 100 \\
0.25 x & \leq 65 \\
x & \leq 260 .
\end{aligned}
$$

Therefore, the maximum distance that I can drive is 260 miles.
b Extra credit: How might one describe (in ordinary English) the cost of renting the truck for the day? It costs $\$ 35$ plus 25 ¢ per mile.

2 Consider the graph of the quadratic function $f(x)=x^{2}+2 x$.
I have $a=1, b=2$, and $c=0$.
a Find the vertex of this graph. (Show what numerical calculations you make or what equations you solve.) First,

$$
h=-\frac{b}{2 a}=-\frac{2}{2(1)}=-1 .
$$

Next,

$$
k=f(h)=f(-1)=(-1)^{2}+2(-1)=-1 .
$$

Therefore, the vertex is

$$
(-1,-1) .
$$

b Find the intercepts of this graph. (Show what numerical calculations you make or what equations you solve.)

Since $c=0$, the vertical intercept is

$$
(0, c)=(0,0),
$$

which is also a horizontal intercept. The other horizontal intercept is then

$$
(2 h, c)=(-2,0) .
$$

(You can also find the horizontal intercepts by solving the equation $f(x)=0$.)
c Graph this function; mark and label at least three points on the graph.
The intercepts and the vertex comprise my three points. Here is the graph:

(This graph was produced using Wolfram Alpha.)

