1 Solve the equation

$$
2^{-x}=16 .
$$

(Show at least one intermediate step.)
I want to get 16 by multiplying and dividing 2 ; I find that $16=2 \cdot 2 \cdot 2 \cdot 2=2^{4}$. Now I can solve the equation:

$$
\begin{aligned}
2^{-x} & =16 ; \\
2^{-x} & =2^{4} ; \\
-x & =4 ; \\
x & =-4 .
\end{aligned}
$$

2 Evaluate $\log _{10} \sqrt{10}$. (Show at least one intermediate step not using a calculator.)
If $x=\log _{10} \sqrt{10}$, this means the same as $10^{x}=\sqrt{10}$. Now I can solve this like I did the previous problem:

$$
\begin{aligned}
10^{x} & =\sqrt{10} \\
10^{x} & =10^{1 / 2} ; \\
x & =\frac{1}{2} .
\end{aligned}
$$

In other words,

$$
\log _{10} \sqrt{10}=\frac{1}{2}
$$

3 Find the domain of the function f given by

$$
f(x)=\ln (x-3) .
$$

(Show at least one intermediate step.)
We can only take logarithms of positive numbers:

$$
\begin{aligned}
x-3 & >0 ; \\
x & >3 .
\end{aligned}
$$

In other words, the domain is

$$
\operatorname{dom} f=(3, \infty)
$$

