In each of the following problems, show at least one intermediate step.
1 Break down

$$
\log \left(\frac{x(x+2)}{(x+3)^{2}}\right)
$$

into an expression involving logarithms of the simplest possible (prime) arguments. (You may assume that x is positive.)
Division inside the logarithm becomes subtraction outside, multiplication inside becomes addition outside, and raising to a power inside becomes multiplication by a coefficient outside.

$$
\log \left(\frac{x(x+2)}{(x+3)^{2}}\right)=\log (x(x+2))-\log \left((x+3)^{2}\right)=\log x+\log (x+2)-2 \log (x+3)
$$

Since $x+2$ and $x+3$ (and course x) can't be factored, this is as far as I can break it down.
2 Combine

$$
3 \log _{5} u+4 \log _{5} v
$$

into a single logarithm.
Multiplication by a coefficient outside the logarithm becomes raising to a power inside it, and addition outside becomes multiplication inside.

$$
3 \log _{5} u+4 \log _{5} v=\log _{5} u^{3}+\log _{5} v^{4}=\log _{5} u^{3} v^{4}
$$

3 Solve the equation

$$
\log _{2}(x+7)+\log _{2}(x+8)=1 .
$$

Either leave the answer in exact form or round off to three decimal places.
I combine both sides into a single logarithm, then drop the logarithms:

$$
\begin{aligned}
\log _{2}(x+7)+\log _{2}(x+8) & =1 ; \\
\log _{2}[(x+7)(x+8)] & =\log _{2} 2 ; \\
(x+7)(x+8) & =2 ; \\
x^{2}+15 x+54 & =0 ; \\
x=-9 & \text { or } x=-6 .
\end{aligned}
$$

However, I must check for extraneous solutions; if $x=-9$, then $x+7$ or $x+8$ is negative, and I can't take a logarithm of a negative number. If $x=-6$, however, then $x+7$ and $x+8$ are both positive, so this solution should work. Therefore,

$$
x=-6 .
$$

4 Solve the equation

$$
1.2^{x}=(0.5)^{-x}
$$

Either leave the answer in exact form or round off to three decimal places.
To solve this, I take logarithms base 1.2 and break down the result, then solve for x like normal:

$$
\begin{aligned}
1.2^{x} & =(0.5)^{-x} ; \\
\log _{1.2} 1.2^{x} & =\log _{1.2} 0.5^{-x} ; \\
x & =-x \log _{1.2} 0.5 ; \\
x+x \log _{1.2} 0.5 & =0 ; \\
\left(1+\log _{1.2} 0.5\right) x & =0 ; \\
x & =0
\end{aligned}
$$

The last step relies on knowing that $1+\log _{1.2} 0.5 \neq 0$, which can be verified with a caclulator (among other ways).

