1 Let f be the function such that

$$
f(x)=3 x^{2}+2 x-4
$$

for every possible real number x. Evaluate or simplify the following. (Show at least one intermediate step for each.)
a $f(-1)$
I replace x with -1 (in parentheses) and evaluate:

$$
\begin{aligned}
f(x) & =3 x^{2}+2 x-4 \\
f(-1) & =3(-1)^{2}+2(-1)-4=-3 .
\end{aligned}
$$

b $f(x+1)$
I replace x with $x+1$ (in parentheses) and simplify:

$$
\begin{aligned}
f(x) & =3 x^{2}+2 x-4 \\
f(x+1) & =3(x+1)^{2}+2(x+1)-4=3 x^{2}+8 x+1
\end{aligned}
$$

2 Let h be the function such that

$$
h(x)=\sqrt{3 x-12}
$$

for every possible real number x. What is the domain of h ? (Show at least one intermediate step.) I can't take a real square root of a negative number, so

$$
\begin{aligned}
3 x-12 & \geq 0 \\
3 x & \geq 12 \\
x & \geq 4 .
\end{aligned}
$$

Therefore, the domain is

$$
\{x \mid x \geq 4\}=[4, \infty)
$$

3 Let f be the function whose graph is shown on the screen.
a What is $f(6)$?
Since $(6,0)$ is on the graph,

$$
f(6)=0
$$

b Solve the equation $f(x)=-2$.
Since $(-5,-2)$ and $(8,-2)$ are on the graph but no other example of $(x,-2)$ is on the graph,

$$
x=-5 \text { or } x=8 .
$$

