1 Let g be the function such that

$$
g(x)=\frac{1}{x^{2}}
$$

for all possible x. Is g even, odd, or neither? (Either show what calculation you make to decide this, or draw a graph that shows your answer.)

Since

$$
g(-x)=\frac{1}{(-x)^{2}}=\frac{1}{x^{2}}
$$

and this is the same as $g(x)$, it follows that g is even.
2 Let h be the function given by

$$
h(x)=x^{2}-2 x .
$$

What is the average rate of change of h from 2 to 4 ? (Show what numerical calculation you make or what equation you solve.)

First,

$$
h(2)=(2)^{2}-2(2)=0 ;
$$

next,

$$
h(4)=(4)^{2}-2(4)=8 .
$$

Therefore, the average rate of change is

$$
\frac{h(4)-h(2)}{(4)-(2)}=\frac{8-0}{4-2}=\frac{8}{2}=4 .
$$

3 Let f be the function shown on the screen.
a How many local minima does f have?
It has 3 local minima. (See $(-8,-4),(0,0)$, and $(5,0)$ on the graph.)
b For each local minimum of f, state where it is and what it is.
One local minimum is at -8 ; it is -4 . Another local minimum is at 0 ; it is 0 . The last local minimum is at 5 ; it is also 0 .
c Extra credit: Are any of these local minima absolute? which?
Yes, the local minimum at -8 is absolute; the absolute minimum of h is -4 .

