Quiz 7

Math-1150-es34

1 Given

$$f(x) = 4x + 2,$$

find a formula for the inverse of f. Show at least what equation you solve to find this, as well as your final answer.

I set f(x) = y and solve for x to find $f^{-1}(y)$:

$$f(x) = y;$$

$$4x + 2 = y;$$

$$4x = y - 2;$$

$$x = \frac{1}{4}y - \frac{1}{2};$$

$$f^{-1}(y) = \frac{1}{4}y - \frac{1}{2}.$$

- **2** Suppose that f is a one-to-one function and f(7) = 13.
- a Extra credit: Do you know what $f^{-1}(7)$ is? If so, say what it is.

To know what $f^{-1}(7)$ is, I'd need to know some x such that f(x) = 7. However, I do not know this.

b Do you know what $f^{-1}(13)$ is? If so, say what it is.

I do know this. Since f(7) = 13,

$$f^{-1}(13) = 7$$

3 Suppose that g is a one-to-one function, the domain of g is $(-\infty, 0]$, and the range of g is $[0, \infty)$. State the domain and range of g^{-1} (indicating which is which).

The domain of g^{-1} is the same as the range of g:

$$\operatorname{dom} g^{-1} = \operatorname{ran} g = [0, \infty).$$

Similarly, the range of g^{-1} is the same as the domain of g:

$$\operatorname{ran} g^{-1} = \operatorname{dom} g = (-\infty, 0]$$