1 Given

$$
f(x)=4 x+2
$$

find a formula for the inverse of f. Show at least what equation you solve to find this, as well as your final answer.

I set $f(x)=y$ and solve for x to find $f^{-1}(y)$:

$$
\begin{aligned}
f(x) & =y ; \\
4 x+2 & =y ; \\
4 x & =y-2 \\
x & =\frac{1}{4} y-\frac{1}{2} ; \\
f^{-1}(y) & =\frac{1}{4} y-\frac{1}{2} .
\end{aligned}
$$

2 Suppose that f is a one-to-one function and $f(7)=13$.
a Extra credit: Do you know what $f^{-1}(7)$ is? If so, say what it is.
To know what $f^{-1}(7)$ is, I'd need to know some x such that $f(x)=7$. However, I do not know this.
b Do you know what $f^{-1}(13)$ is? If so, say what it is.
I do know this. Since $f(7)=13$,

$$
f^{-1}(13)=7
$$

3 Suppose that g is a one-to-one function, the domain of g is $(-\infty, 0]$, and the range of g is $[0, \infty)$. State the domain and range of g^{-1} (indicating which is which).

The domain of g^{-1} is the same as the range of g :

$$
\operatorname{dom} g^{-1}=\operatorname{ran} g=[0, \infty)
$$

Similarly, the range of g^{-1} is the same as the domain of g :

$$
\operatorname{ran} g^{-1}=\operatorname{dom} g=(-\infty, 0]
$$

