1 Suppose that -5 is an x-intercept of the graph of $y=f(x)$; so in other words, $(-5,0)$ is an intercept of that graph. For each of the following equations, state what must be an x-intercept of its graph.
a $y=f(x+2)$
Since $(-5,0)$ is on the original graph, $0=f(-5)$. Now, $x+2=-5$ if $x=-7$, so $0=f(-7+2)$. Therefore,

$$
(-7,0)
$$

must be on this graph; that is, -7 is an x-intercept.
b $y=4 f(x)$
Since $(-5,0)$ is on the original graph, $0=f(-5)$. Multiplying both sides by $4,0=4 f(-5)$. Therefore,

$$
(-5,0)
$$

must be on this graph too; that is, -5 is still an x-intercept.
2 On the number plane below, draw the graphs of these three equations. (Be sure to label which is which.)
a $y=x^{2}$
You should be familiar with this graph; the key points are $(0,0),(1,1),(-1,1),(2,4)$, and $(-2,4)$. The graph appears below in blue.
b $y=x^{2}+2$
This is shifted up by 2 ; in other words, add 2 to the second coordinate of each point. The key points become $(0,2),(1,3),(-1,3),(2,6)$, and $(-2,6)$. The graph appears below in brown.
c $y=(x-2)^{2}$
This graph is shifted to the right by 2 ; in other words, add 2 to the first coordinate of each point. The key points become $(2,0),(3,1),(1,1),(4,4)$, and $(0,4)$. The graph appears below in purple.

(These graphs were produced by Wolfram Alpha.)

