1 Look at the two graphs on the board. Identify which is a graph of the cube function $\left(f(x)=x^{3}\right)$ and which is a graph of the cube-root function $(f(x)=\sqrt[3]{x})$.
a This is the graph of the cube-root function.
b This is the graph of the cube function.
2 Let f be the function given by

$$
f(x)= \begin{cases}2 x-4 & \text { for }-1 \leq x \leq 2 \\ x^{3}-2 & \text { for } 2<x \leq 3\end{cases}
$$

a What is $f(1)$? (Either show what numerical calculation you make, or show how you get the answer from a graph.)
If $x=1$, then $-1 \leq x \leq 2$ is true, so $f(x)=2 x-4$. Therefore,

$$
f(1)=2(1)-4=-2 .
$$

b What is $f(3)$? (Either show what numerical calculation you make, or show how you get the answer from a graph.)
If $x=3$, then $-1 \leq x \leq 2$ is false, but $2<x \leq 3$ is (barely) true, so $f(x)=x^{3}-2$. Therefore,

$$
f(3)=(3)^{3}-2=25
$$

c Extra credit: Sketch a graph of f. (Be sure to label the scale.)

