1 Given

$$
\begin{gathered}
f(x)=x^{2} \\
g(x)=x^{2}+4
\end{gathered}
$$

find a simplified formula for $g \circ f$. (Show at least one intermediate step.)
If it helps, write the formula for g as

$$
g(y)=y^{2}+4
$$

Then taking y to be $f(x)$, we have

$$
(g \circ f)(x)=g(f(x))=g\left(x^{2}\right)=\left(x^{2}\right)^{2}+4=x^{4}+4
$$

2 Given

$$
f(x)=4 x+2
$$

find a formula for the inverse of f. Show at least what equation you solve to find this, as well as your final answer.
I set $f(x)=y$ and solve for x to find $f^{-1}(y)$:

$$
\begin{aligned}
f(x) & =y \\
4 x+2 & =y \\
4 x & =y-2 \\
x & =\frac{1}{4} y-\frac{1}{2} \\
f^{-1}(y) & =\frac{1}{4} y-\frac{1}{2} .
\end{aligned}
$$

3 Suppose that g is a one-to-one function, the domain of g is $(-\infty, 0]$, and the range of g is $[0, \infty)$. State the domain and range of g^{-1} (indicating which is which).
The domain of g^{-1} is the same as the range of g :

$$
\operatorname{dom} g^{-1}=\operatorname{ran} g=[0, \infty)
$$

Similarly, the range of g^{-1} is the same as the domain of g :

$$
\operatorname{ran} g^{-1}=\operatorname{dom} g=(-\infty, 0]
$$

