1 A rectangle in the (x, y)-plane is inscribed (set tightly inside) a circle with the equation $x^{2}+y^{2}=4$. Express the area of the rectangle as a function of the x-coordinate of the point in Quadrant I that is a vertex of the rectangle.
Let x and y be the coordinates of this vertex. Since $x^{2}+y^{2}=4$ and $y>0$, I solve to get $y=\sqrt{4-x^{2}}$. The base of the rectangle has length $l=2 x$, and the height has length $h=2 y$, so the area is $A=l h=$ $(2 x)(2 y)=4 x y$. Therefore,

$$
A=4 x \sqrt{4-x^{2}}
$$

2 From a square piece of cardboard with 24 inches on each side, you cut out a square piece from each corner (with each piece the same size), leaving behind a cross shape; think of this cross as a central square with a rectangle on each side, and fold up the rectangles to make a box with no lid. Express the volume of this box as a function of the length of the square piece cut out of one of the corners.
Let x be the length in inches of a piece cut out, and let y be the remaining length in inches. Then $2 x+$ $y=24$, so $y=24-2 x$. The length and width of the box are $l=y$ and $w=y$, while the height is $h=x$. Therefore, the volume is

$$
V=l w h=y^{2} x=x(24-2 x)^{2}
$$

3 Consider the points $(3,-4)$ and $(5,4)$ in the cartesian real number plane.
a What is the distance between these points? (Show what numerical calculation you make.)
The distance is

$$
\sqrt{((5)-(3))^{2}+((4)-(-4))^{2}}=\sqrt{(2)^{2}+(8)^{2}}=\sqrt{(4)+(64)}=\sqrt{68}=2 \sqrt{17}
$$

b What is the midpoint between these points? (Show what numerical calculation you make.)
The midpoint is

$$
\left(\frac{(3)+(5)}{2}, \frac{(-4)+(4)}{2}\right)=\left(\frac{8}{2}, \frac{0}{2}\right)=(4,0)
$$

