Homework 1

MATH-1150-ES32&ES36

1.1 To begin with, I multiply both sides by 12 (a common denominator); after that, it's pretty straightforward.

$$\frac{2x}{3} - \frac{x}{2} = \frac{5}{12}; 8x - 6x = 5; 2x = 5; x = \frac{5}{2}.$$

If you like, the solution set for x is $\{5/2\}$.

1.4 I isolate the square root, square both sides, and check for extraneous solutions.

$$\sqrt{2x - 5} + 2 = 4;$$

$$\sqrt{2x - 5} = 2;$$

$$2x - 5 = 4, \ 2 \ge 0;$$

$$2x = 9, \ \text{True};$$

$$x = \frac{9}{2}.$$

If you like, the solution set for x is $\{9/2\}$.

1.9 A number must be close to zero if its absolute value is to be small. This gives me a compound inequality with three sides, and I must do the same operations to all of tem.

$$\begin{aligned} |3x - 4| < 8; \\ -8 < 3x + 4 < 8; \\ -12 < 3x < 4; \\ -4 < x < \frac{4}{3}. \end{aligned}$$

In interval notation, the solution set for x is

$$\left(-4,\frac{4}{3}\right)$$
.

Here is a graph:

$$<-\underbrace{(-1)}_{-4} + \underbrace{(-1)}_{-3} + \underbrace{(-1)}_{-2} + \underbrace{(-1)}_{-1} + \underbrace{$$

1.12 I'll use the quadratic formula, with a = 4, b = -4, and c = 5. Then

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(4)(5)}}{2(4)} = \frac{4 \pm \sqrt{-64}}{8} = \frac{4 \pm 8i}{8} = \frac{1}{2} \pm i$$

If you like, the solution set for x is $\{1/2 + i, 1/2 - i\}$.

Page 1 of 1