1.1 To begin with, I multiply both sides by 12 (a common denominator); after that, it's pretty straightforward.

$$
\begin{aligned}
\frac{2 x}{3}-\frac{x}{2} & =\frac{5}{12} \\
8 x-6 x & =5 \\
2 x & =5 \\
x & =\frac{5}{2} .
\end{aligned}
$$

If you like, the solution set for x is $\{5 / 2\}$.
1.4 I isolate the square root, square both sides, and check for extraneous solutions.

$$
\begin{aligned}
\sqrt{2 x-5}+2 & =4 \\
\sqrt{2 x-5} & =2 \\
2 x-5 & =4,2 \geq 0 ; \\
2 x & =9, \text { True } \\
x & =\frac{9}{2} .
\end{aligned}
$$

If you like, the solution set for x is $\{9 / 2\}$.
1.9 A number must be close to zero if its absolute value is to be small. This gives me a compound inequality with three sides, and I must do the same operations to all of tem.

$$
\begin{gathered}
|3 x-4|<8 \\
-8<3 x+4<8 \\
-12<3 x<4 \\
-4<x<\frac{4}{3}
\end{gathered}
$$

In interval notation, the solution set for x is

$$
\left(-4, \frac{4}{3}\right)
$$

Here is a graph:

1.12 I'll use the quadratic formula, with $a=4, b=-4$, and $c=5$. Then

$$
x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(4)(5)}}{2(4)}=\frac{4 \pm \sqrt{-64}}{8}=\frac{4 \pm 8 \mathrm{i}}{8}=\frac{1}{2} \pm \mathrm{i}
$$

If you like, the solution set for x is $\{1 / 2+\mathrm{i}, 1 / 2-\mathrm{i}\}$.

