1 How is the graph of the equation

$$
y^{4}=2 x^{2}-3
$$

symmetric?
a with respect to the horizontal axis
b with respect to the vertical axis
c with respect to the origin
d all of the above
e none of the above

2 Is the function

$$
f(x)=\frac{5 x^{4}-3}{3 x^{2}-2}
$$

even, odd, or neither?
a even
b odd
c neither
3 Find an equation in (x, y) for the line through the points $(-4,0)$ and $(1,-5)$.
a $y=-x+4$
b $y=x+4$
c $y=x-4$
d $y=-x-4$
4 Find both intercepts of the line in the (x, y)-plane with the equation

$$
3 x-2 y=5
$$

$a\left(\frac{5}{2}, 0\right)$ and $\left(0,-\frac{5}{3}\right)$
$b\left(-\frac{5}{2}, 0\right)$ and $\left(0, \frac{5}{3}\right)$
$c\left(-\frac{5}{3}, 0\right)$ and $\left(0, \frac{5}{2}\right)$
$d\left(\frac{5}{3}, 0\right)$ and $\left(0,-\frac{5}{2}\right)$

5 Consider these equations:

$$
\begin{aligned}
6 x-3 y & =-1 \\
x+8 y & =2
\end{aligned}
$$

How are their graphs related?
a parallel
b perpendicular
c both
d neither
6 Solve the system of equations

$$
\left\{\begin{aligned}
-3 x-8 y & =-35 \\
-3 x+7 y & =25
\end{aligned}\right.
$$

$a \quad(x, y)=(-1,-4)$
$b \quad(x, y)=(1,-4)$
$c(x, y)=(1,4)$
$d(x, y)=(-1,4)$
7 Given

$$
f(x)=\frac{x-2}{x+4}
$$

find $f(0)$.
a $f(0)=0$
b $f(0)=\frac{1}{2}$
c $f(0)=-\frac{1}{2}$
d $f(0)=1$
8 Given

$$
f(x)= \begin{cases}x+3 & \text { for } x \leq 0 \\ x-3 & \text { for } 0<x<1 \\ x-2 & \text { for } x \geq 1\end{cases}
$$

find $f(1)$.
a $f(1)=4$
b $f(1)=-2$
c $f(1)=-1$
$d f(1)$ is undefined

9 Given that f is the function with the graph below, find $f(2)$.

a $f(2)=-2.2$
b $f(2)=3.2$
c $f(2)=-4$
d $f(2)=0$
10 Given

$$
\begin{aligned}
& f(x)=3 x+6 \\
& g(x)=6 x+3,
\end{aligned}
$$

write down a simplified formula for $f-g$.
$a(f-g)(x)=-3 x^{2}+9 x$
$b(f-g)(x)=-3 x+9$
c $(f-g)(x)=-3 x+3$
$d(f-g)(x)=-3 x^{2}+3 x$
11 Given

$$
\begin{gathered}
f(x)=x+6, \\
g(x)=x^{2}
\end{gathered}
$$

write down a simplified formula for the composite function $f \circ g$.
$a(f \circ g)(x)=x^{2}+36$
$b(f \circ g)(x)=x^{2}+6$
$c(f \circ g)(x)=x^{2}+12 x+36$
$d(f \circ g)(x)=x^{3}+6 x^{2}$

12 Given

$$
f(x)=\frac{x+5}{5}
$$

write down a simplified formula for the inverse function f^{-1}.
a $f^{-1}(x)=\frac{5}{x+5}$
b $f^{-1}(x)=\frac{5}{x-5}$
c $f^{-1}(x)=5 x+5$
d $f^{-1}(x)=5 x-5$
13 Given

$$
g(x)=\sqrt{x-2}
$$

what is the domain of g ?
a $\{x \mid x>-2\}=(-2, \infty)$
$b\{x \mid x \geq 2\}=[2, \infty)$
c $\{x \mid x>2\}=(2, \infty)$
$d\{x \mid x \geq-2\}=[-2, \infty)$
14 Given

$$
g(x)=\sqrt{x-2}
$$

what is the range of g ?
a $\{x \mid x \geq-2\}=[-2, \infty)$
$b\{x \mid x \geq 0\}=[0, \infty)$
$c \mathbb{R}=(-\infty, \infty)$
$d\{x \mid x \geq 2\}=[2, \infty)$
15 Given

$$
g(x)=\sqrt{x-2}
$$

What is the average rate of change of g from 3 to 11 ?
a $\frac{1}{4}$
b 4
c $-\frac{1}{4}$
d -4
16 Given

$$
f(x)=3 x^{2}-12 x+9
$$

what is the vertex of the graph of f ?
$a(-2,45)$
$b(0,9)$
$c(1,0)$
$d \quad(2,-3)$

17 Solve the equation

$$
2^{x+3}=4^{2 x} .
$$

a $x=0$
b $x=\ln 2 \approx 0.7$
c $x=\log _{2} 3 \approx 1.6$
d $x=1$
18 Given

$$
f(x)=3 x^{2}-12 x+9
$$

what are the roots (zeroes) of f, if any?
a 1
b 3
c both of the above
d neither of the above

19 Given

$$
f(x)=2 x^{2}-3 x+1
$$

sketch a graph of f, showing all intercepts (if any).
20 Given

$$
f(x)=x^{3}-2 x^{2}-4 x+8,
$$

what is the multiplicity of the root (zero) 2 ?
a 0
b 1
c 2
d 3
21 Solve the equation

$$
x^{4}+x^{3}+2 x^{2}+4 x=8
$$

in the complex numbers.
a $x=2$ or $x=-2 \mathrm{i}$ or $x=-1$
b $x=-2$ or $x=1$ or $x=-2 \mathrm{i}$ or $x=2 \mathrm{i}$
c $x=2 \mathrm{i}$ or $x=-2$ or $x=1$
$d x=2$ or $x=-1$ or $x=2 \mathrm{i}$ or $x=-2 \mathrm{i}$

22 Suppose that the unit price at which x items can be sold in a year is $1000-x$ dollars. How many items should be sold in a year to maximise revenue? (Hint: First find a quadratic function for annual revenue as a function of the number of items, remembering that revenue is quantity times price.)
a 500
b 1000
c 250
d 300

23 While I was in graduate school, I didn't pay anything on my undergraduate loans. However, those loans continued to accrue interest at a 6% annual rate, compounded monthly. At the end of my six years of graduate school, I owed $\$ 20,000$ (approximately) on these loans. What was the original amount of the loan (approximately) that I owed before I started graduate school?
a \$13,000
b \$14,000
c $\$ 18,000$
d $\$ 19,000$

24 Using a central-pivot irrigation system, a farmer irrigates a circular patch within a square field. The size of the field is fixed; the farmer irrigates the largest possible circle within that field. Express the area that the system irrigates as a function of the total area of the field.

Hints: The area of a circle is πr^{2}, where π is a constant (approximately 3.14) and r is the radius of the circle (the distance from its centre to its edge). The area of a square is l^{2}, where l is the length of any side of the square. A picture may help you see the relationship between the size of the circle (given by r) and the size of the square (given by l).
a $f(x)=\frac{\pi^{2}}{16} x^{2} \approx 0.617 x^{2}$
b $f(x)=\frac{\pi^{2}}{16} x \approx 0.617 x$
c $f(x)=\frac{\pi}{4} x^{2} \approx 0.785 x^{2}$
d $f(x)=\frac{\pi}{4} x \approx 0.785 x$

Answers

$1 \mathrm{D}, 2 \mathrm{~A}, 3 \mathrm{D}, 4 \mathrm{D}, 5 \mathrm{D}, 6 \mathrm{C}, 7 \mathrm{C}, 8 \mathrm{C}, 9 \mathrm{C}, 10 \mathrm{C}, 11 \mathrm{~B}, 12 \mathrm{D}, 13 \mathrm{~B}, 14 \mathrm{~B}, 15 \mathrm{~A}, 16 \mathrm{D}, 17 \mathrm{D}, 18 \mathrm{C}, 20 \mathrm{C}$, $21 \mathrm{~B}, 22 \mathrm{~A}, 23 \mathrm{~B}, 24 \mathrm{D}$.

19

