- Canvas page (where you must log in).
- Help with DjVu (if you have trouble reading the DjVu files on this page).
- Official syllabus (DjVu).
- Course policies (DjVu).
- Class hours: Online only.
- Final exam time: By appointment only.

- Name: Toby Bartels, PhD.
- Canvas messages.
- Email: TBartels@Southeast.edu.
- Voice mail: 1-402-323-3452.
- Text messages: 1-402-805-3021.
- Office hours:
- on Mondays through Thursdays from 11:00 to 12:00 (and by appointment) in LNK U9C,
- on Fridays from 1:00 PM to 2:00 (and by appointment) in ESQ 112, and
- over Zoom meeting 610-024-2876 (by appointment).

- General review:
- Reading:
- My online introduction;
- Skim
Chapter R (
*except*Section R.6) and Chapter 1 (*except*Section 1.6) from the textbook, and review anything that you are shaky on.

- Exercises due on March 7 Tuesday (submit these here on Canvas):
- Which of the following are
*equations*?- 2
*x*+*y*; - 2
*x*+*y*= 0; *z*= 2*x*+*y*.

- 2
- You probably don't know how to
*solve*the equation*x*^{5}+ 2*x*= 1, but show what numerical calculation you make to*check*whether*x*= 1 is a solution. - Write the set {
*x*|*x*< 3} in interval notation and draw a graph of the set. - Suppose that
*a**x*^{2}+*b**x*+*c*= 0 but*a*≠ 0; write down a formula for*x*.

- Which of the following are
- Exercises from the textbook due on March 8 Wednesday (submit these through MyLab in the Next item): O.1.1, O.1.2, O.1.3, O.1.4, O.1.5, O.1.6, O.1.7, O.1.8, O.1.10, O.1.12, 1.1.27, 1.1.39, 1.2.23, 1.2.49, 1.3.63, 1.5.71, 1.5.75, 1.7.33, 1.7.47.

- Reading:
- Graphing points:
- Reading: Section 2.1 (pages 150–154) from the textbook.
- Exercises due on March 8 Wednesday (submit these here on Canvas):
- Fill in the blanks with vocabulary words: The two number lines that mark the coordinates in a rectangular coordinate system are the coordinate _____, and the point where they intersect is the _____.
- Fill in the blank with a number: If the legs of a right triangle have lengths 3 and 4, then the length of its hypotenuse is ___.
- Fill in the blanks with algebraic expressions:
The distance between the points
(
*x*_{1},*y*_{1}) and (*x*_{2},*y*_{2}) is _____, and the midpoint between them is (___, ___).

- Exercises from the textbook due on March 9 Thursday (submit these through MyLab in the Next item): 2.1.4, 2.1.15, 2.1.17, 2.1.19, 2.1.21, 2.1.23, 2.1.27, 2.1.33, 2.1.39, 2.1.43, 2.1.47, 2.1.63, 2.1.71.

- Graphing equations:
- Reading:
- Section 2.2 (pages 157–164) from the textbook;
- My online notes on symmetry and intercepts.

- Exercises due on March 9 Thursday (submit these here on Canvas):
Fill in the blanks with vocabulary words:
- Given a graph in a coordinate plane, a point on the graph that lies on at least one coordinate axis is a(n) _____ of that graph.
- If for each point (
*x*,*y*) on a graph, the point (−*x*, −*y*) is also on the graph, then the graph is symmetric with respect to the _____.

- Exercises from the textbook due on March 10 Friday (submit these through MyLab in the Next item): 2.2.1, 2.2.2, 2.2.7, 2.2.13, 2.2.17, 2.2.23, 2.2.29, 2.2.31, 2.2.33, 2.2.35, 2.2.41, 2.2.43, 2.2.45, 2.2.47, 2.2.53, 2.2.55, 2.2.61, 2.2.67, 2.2.71, 2.2.77.

- Reading:
- Lines:
- Reading:
- Section 2.3 (pages 169–179) from the textbook;
- My online notes on lines and line segments.

- Exercises due on March 10 Friday (submit these here on Canvas):
Fill in the blanks with words or numbers:
- Write an equation
for the line in the (
*x*,*y*)-plane with slope*m*and*y*-intercept (0,*b*). - The slope of a vertical line is _____, and the slope of a horizontal line is _____.
- Suppose that a line
*L*has slope 2. The slope of any line parallel to*L*is ___, and the slope of any line perpendicular to*L*is ___.

- Write an equation
for the line in the (
- Exercises from the textbook due on March 20 Monday (submit these through MyLab in the Next item): 2.3.2, 2.3.7, 2.3.8, 2.3.13, 2.3.15, 2.3.17, 2.3.19, 2.3.21, 2.3.23, 2.3.25, 2.3.27, 2.3.29, 2.3.31, 2.3.45, 2.3.51, 2.3.53, 2.3.57, 2.3.63, 2.3.67, 2.3.73, 2.3.75, 2.3.79, 2.3.85, 2.3.91, 2.3.93, 2.3.111, 2.3.113.

- Reading:
- Systems of equations:
- Reading:
- Section 12.1 (pages 868–878) from the textbook;
- My online notes and video on systems of equations.

- Exercises due on March 20 Monday (submit these here on Canvas):
- Answer Yes or No:
Suppose that you have
a system of equations and a point that might be a solution.
If the point
*is*a solution to one equation in the system but*not*a solution to another equation in the system, then is that point a solution to the system of equations? - Consider the system of equations
consisting of
*x*+ 3*y*= 4 (equation 1) and 2*x*+ 3*y*= 5 (equation 2).- If I solve equation (1) for
*x*to get*x*= 4 − 3*y*and apply this to equation (2) to get 2(4 − 3*y*) + 3*y*= 5 (and continue from there), then what method am I using to solve this system? - If instead I multiply equation (1) by −2
to get −2
*x*− 6*y*= −8 and combine this with equation (2) to get −3*y*= −3 (and continue from there), then what method am I using to solve this system?

- If I solve equation (1) for

- Answer Yes or No:
Suppose that you have
a system of equations and a point that might be a solution.
If the point
- Exercises from the textbook due on March 21 Tuesday (submit these through MyLab in the Next item): 12.1.3, 12.1.4, 12.1.6, 12.1.11, 12.1.13, 12.1.15, 12.1.17, 12.1.19, 12.1.21, 12.1.27, 12.1.31, 12.1.45, 12.1.47, 12.1.65, 12.1.73.

- Reading:
- Functions:
- Reading:
- Section 3.1 (pages 203–215) from the textbook;
- My online notes on functions.

- Exercises due on March 21 Tuesday (submit these here on Canvas):
- Fill in the blank with a mathematical expression:
If
*g*(*x*) = 2*x*+ 3 for all*x*, then*g*(___) = 2(5) + 3 = 13. - Fill in the blank with an equation, inequality, or other statement:
If a function
*f*is thought of as a relation, then it's the relation {x, y | _____}. - Fill in the blanks with vocabulary words:
If
*f*(3) = 5, then 3 belongs to the _____ of the function, and 5 belongs to its _____. - Fill in the blank with an arithmetic operation:
If
*f*(*x*) = 2*x*for all*x*, and*g*(*x*) = 3*x*for all*x*, then (*f*___*g*)(*x*) = 5*x*for all*x*.

- Fill in the blank with a mathematical expression:
If
- Exercises from the textbook due on March 22 Wednesday (submit these through MyLab in the Next item): 3.1.1, 3.1.2, 3.1.3, 3.1.10, 3.1.31, 3.1.33, 3.1.35, 3.1.43, 3.1.49, 3.1.51, 3.1.53, 3.1.55, 3.1.59, 3.1.63, 3.1.71, 3.1.79, 3.1.81, 3.1.103.

- Reading:
- Graphs of functions:
- Reading: Section 3.2 (pages 219–223) from the textbook.
- Exercises due on March 22 Wednesday (submit these here on Canvas):
- Fill in the blanks with mathematical expressions:
If (3, 5) is a point on the graph of a function
*f*, then*f*(___) = ___. - Fill in the blank with a geometric word: The graph of a relation is the graph of a function if and only if every _____ line goes through the graph at most once.
- True or false:
The graph of a function can have any number of
*x*-intercepts. - True or false:
The graph of a function
can have any number of
*y*-intercepts.

- Fill in the blanks with mathematical expressions:
If (3, 5) is a point on the graph of a function
- Exercises from the textbook due on March 23 Thursday (submit these through MyLab in the Next item): 3.2.7, 3.2.9, 3.2.11, 3.2.13, 3.2.15, 3.2.17, 3.2.19, 3.2.21, 3.2.27, 3.2.29, 3.2.31, 3.2.33, 3.2.39, 3.2.45, 3.2.47.

- Properties of functions:
- Reading:
- Section 3.3 (pages 229–237) from the textbook;
- My online notes on properties of functions.

- Exercises due on March 23 Thursday (submit these here on Canvas):
Fill in the blanks with vocabulary words:
- Suppose that
*f*is a function and, whenever*f*(*x*) exists, then*f*(−*x*) also exists and equals*f*(*x*). Then*f*is _____. - If
*c*is a number and*f*is a function, and if*f*(*c*) = 0, then*c*is a(n) _____ of*f*. - Suppose that a function
*f*is defined on (at least) a nontrivial interval*I*and that, whenever*a*∈*I*and*b*∈*I*, if*a*<*b*, then*f*(*a*) <*f*(*b*). Then*f*is (strictly) _____ on*I*. - Suppose that
*f*(*x*) =*M*for at least one value of*x*, and*f*(*x*) ≤*M*for every value of*x*. Then*M*is the absolute _____ of*f*.

- Suppose that
- Exercises from the textbook due on March 24 Friday (submit these through MyLab in the Next item): 3.3.2, 3.3.3, 3.3.5, 3.3.13, 3.3.15, 3.3.17, 3.3.19, 3.3.21, 3.3.23, 3.3.26, 3.3.27, 3.3.29, 3.3.31, 3.3.37, 3.3.39, 3.3.41, 3.3.43, 3.3.45, 3.3.49, 3.3.51.

- Reading:
- Word problems with functions:
- Reading:
- Section 3.6 (pages 267–269) from the textbook;
- My online notes and video on functions in word problems.

- Exercise due on March 28 Tuesday (submit this here on Canvas):
Suppose that you have a problem with three quantities,
*A*,*B*, and*C*; and suppose that you have two equations, equation (1) involving*A*and*B*, and equation (2) involving*B*and*C*. If you wish to find*A*as a function of*C*, then which equation should you solve first, and which variable should you solve it for? (Although there is a single best answer in my opinion, there is more than one answer that will progress the solution, and I'll accept either of them.). - Exercises from the textbook due on March 29 Wednesday (submit these through MyLab in the Next item): 3.6.5, 3.6.13, 3.6.15, 3.6.21, 3.6.23.

- Reading:
- Linear functions:
- Reading: Section 4.1 (pages 281–287) from the textbook.
- Exercises due on March 29 Wednesday (submit these here on Canvas):
- Suppose that
*y*is linear function of*x*. If the rate of change of the function is*m*and the initial value of the function is*b*, then write an equation relating*x*and*y*. - Suppose that
*f*is a linear function. If you know*f*(*a*) and*f*(*b*) for two distinct real numbers*a*and*b*, then give a formula for the slope of the graph of*f*using*a*,*b*,*f*(*a*), and*f*(*b*).

- Suppose that
- Exercises from the textbook due on March 30 Thursday (submit these through MyLab in the Next item): 4.1.2, 4.1.13, 4.1.15, 4.1.17, 4.1.19, 4.1.21, 4.1.23, 4.1.25, 4.1.27, 4.1.37, 4.1.43, 4.1.45, 4.1.47, 4.1.49.

- Examples of functions:
- Reading:
- Section 3.4 Objective 1 (pages 242–246) from the textbook;
- My online notes and video on partially-defined functions;
- The rest of Section 3.4 (pages 247–249) from the textbook.

- Exercises due on March 30 Thursday (submit these here on Canvas):
Fill in the blanks with vocabulary words:
- In the _____ function, the output is always defined and equal to the input.
- If you reflect the graph of the cube function
across the diagonal line where
*y*=*x*, then you get the graph of the _____ function. - A _____-defined function is defined by a formula together with a condition restricting its inputs.
- A _____-defined function is defined by more than one formula, each with a condition restricting its inputs.

- Exercises from the textbook due on March 31 Friday (submit these through MyLab in the Next item): 3.4.9, 3.4.10, 3.4.11–18, 3.4.19, 3.4.20, 3.4.21, 3.4.22, 3.4.23, 3.4.24, 3.4.25, 3.4.26, 3.4.27, 3.4.29, 3.4.31, 3.4.33, 3.4.35, 3.4.43, 3.4.45, 3.4.51.

- Reading:
- Composite functions:
- Reading:
- Section 6.1 (pages 415–419) from the textbook;
- My online notes on composite functions.

- Exercises due on March 31 Friday (submit these here on Canvas):
- Fill in the blanks
with a vocabulary word and a mathematical expression:
If
*f*and*g*are functions, then their _____ function, denoted*f*∘*g*, is defined by (*f*∘*g*)(*x*) = _____. - Fill in the blanks with mathematical expressions:
A number
*x*is in the domain of*f*∘*g*if and only if ___ belongs to the domain of*g*and ___ belongs to the domain of*f*.

- Fill in the blanks
with a vocabulary word and a mathematical expression:
If
- Exercises from the textbook due on April 3 Monday (submit these through MyLab in the Next item): 6.1.2, 6.1.9, 6.1.11, 6.1.15, 6.1.19, 6.1.25, 6.1.27, 6.1.29, 6.1.33, 6.1.55.

- Reading:
- Inverse functions:
- Reading:
- Section 6.2 (pages 423–430) from the textbook;
- My online notes on inverse functions.

- Exercises due on April 3 Monday (submit these here on Canvas):
- Fill in the blank with a geometric word: A function is one-to-one if and only if every _____ line goes through its graph at most once.
- Fill in the blank with a vocabulary word:
If
*f*is a one-to-one function, then its _____ function, denoted*f*^{−1}, exists. - Fill in the blank with an ordered pair:
If
*f*is one-to-one and (2, −3) is on the graph of*f*, then ___ is on the graph of*f*^{−1}. - Fill in the blanks with vocabulary words:
If
*f*is one-to-one, then the domain of*f*^{−1}is the _____ of*f*, and the range of*f*^{−1}is the _____ of*f*.

- Exercises from the textbook due on April 4 Tuesday (submit these through MyLab in the Next item): 6.2.4, 6.2.5, 6.2.7, 6.2.8, 6.2.9, 6.2.12, 6.2.21, 6.2.23, 6.2.25, 6.2.27, 6.2.29, 6.2.31, 6.2.35, 6.2.37, 6.2.41, 6.2.43, 6.2.45, 6.2.55, 6.2.57, 6.2.59, 6.2.61, 6.2.75, 6.2.77, 6.2.79 6.2.87.

- Reading:
- Coordinate transformations:
- Reading:
- Section 3.5 (pages 254–263) from the textbook;
- My online notes on linear coordinate transformations.

- Exercises due on April 4 Tuesday (submit these here on Canvas):
Assume that the axes are oriented in the usual way
(positive
*x*-axis to the right, positive*y*-axis upwards).- Fill in the blank with a direction:
To change the graph of
*y*=*f*(*x*) into the graph of*y*=*f*(*x*− 1), shift the graph to the ___ by 1 unit. - To change the graph of
*y*=*f*(*x*) into the graph of*y*= −*f*(*x*), do you reflect the graph*left and right*or*up and down*? - To change the graph of
*y*=*f*(*x*) into the graph of*y*=*f*(2*x*), do you*compress*or*stretch*the graph left and right?

- Fill in the blank with a direction:
To change the graph of
- Exercises from the textbook due on April 5 Wednesday (submit these through MyLab in the Next item): 3.5.5, 3.5.6, 3.5.7–10, 3.5.11–14, 3.5.15–18, 3.5.19, 3.5.21, 3.5.23, 3.5.25, 3.5.29, 3.5.30, 3.5.33, 3.5.35, 3.5.37, 3.5.41, 3.5.43, 3.5.45, 3.5.47, 3.5.53, 3.5.61, 3.5.63, 3.5.73, 3.5.89.

- Reading:
- Quadratic functions:
- Reading:
- Section 4.3 (pages 299–308) from the textbook;
- My online notes on quadratic functions.

- Exercises due on April 5 Wednesday (submit these here on Canvas):
- Fill in the blank with a vocabulary word: The shape of the graph of a nonlinear quadratic function is a(n) _____.
- Fill in the blanks with algebraic expressions:
Given
*a*≠ 0 and*f*(*x*) =*a**x*^{2}+*b**x*+*c*for all*x*, the vertex of the graph of*f*is (___, ___). - Given
*a*≠ 0,*b*^{2}− 4*a**c*> 0, and*f*(*x*) =*a**x*^{2}+*b**x*+*c*for all*x*, how many*x*-intercepts does the graph of*y*=*f*(*x*) have?

- Exercises from the textbook due on April 6 Thursday (submit these through MyLab in the Next item): 4.3.1, 4.3.2, 4.3.3, 4.3.4, 4.3.15–22, 4.3.31, 4.3.33, 4.3.43, 4.3.49, 4.3.53, 4.3.57, 4.3.61, 4.3.63, 4.3.67, 4.3.70.

- Reading:
- Applications of quadratic functions:
- Reading:
- Section 4.4 through Objective 1 (pages 312–316) from the textbook;
- My online notes on economic applications.

- Exercises due on April 6 Thursday (submit these here on Canvas):
- Suppose that
*x*and*y*are variables, and*y*=*a**x*^{2}+*b**x*+*c*for some constants*a*,*b*, and*c*. Fill in the first blank with an algebraic equation or inequality, and fill in the blank with an algebraic expression:*y*has a maximum value if _____; in this case,*y*has its maximum when*x*= ___. - If the width of a rectangle is
*w*metres and its length is*l*metres, then what is its area (in square metres)? - If you make and sell
*x*items per year at a price of*p*dollars per item, then what is your revenue (in dollars per year)? - If a business's revenue is
*R*dollars per year and its costs are*C*dollars per year, then what is its profit (in dollars per year)?

- Suppose that
- Exercises from the textbook due on April 7 Friday (submit these through MyLab in the Next item): 4.3.87, 4.3.89, 4.3.93, 4.3.95, 4.4.3, 4.4.5, 4.4.7, 4.4.9, 4.4.11, 4.4.13, 4.4.15.

- Reading:

- Exponential functions:
- Reading:
- Section 6.3 (pages 435–446) from the textbook;
- My online notes on exponential functions.

- Exercises due on April 7 Friday (submit these here on Canvas):
Let
*f*(*x*) be*C**b*^{x}for all*x*.- What is
*f*(*x*+ 1)/*f*(*x*)? - What are
*f*(−1),*f*(0), and*f*(1)?

*b*and/or*C*, and simplify them as much as possible.) - What is
- Exercises from the textbook due on April 10 Monday (submit these through MyLab in the Next item): 6.3.1, 6.3.15, 6.3.16, 6.3.21, 6.3.23, 6.3.25, 6.3.27, 6.3.29, 6.3.31, 6.3.33, 6.3.35, 6.3.37–44, 6.3.45, 6.3.47, 6.3.51, 6.3.53, 6.3.57, 6.3.59, 6.3.61, 6.3.65, 6.3.67, 6.3.71, 6.3.73, 6.3.76, 6.3.77, 6.3.79, 6.3.83, 6.3.85, 6.3.91, 6.3.93.

- Reading:
- Logarithmic functions:
- Reading:
- Section 6.4 (pages 452–460) from the textbook;
- My online notes on logarithmic functions.

- Exercises due on April 10 Monday (submit these here on Canvas):
Suppose that
*b*> 0 and*b*≠ 1.- Rewrite log
_{b}*M*=*r*as an equation involving exponentiation. - What are
log
_{b}*b*, log_{b}1, and log_{b}(1/*b*)?

- Rewrite log
- Exercises from the textbook due on April 11 Tuesday (submit these through MyLab in the Next item): 6.4.11, 6.4.13, 6.4.15, 6.4.17, 6.4.19, 6.4.21, 6.4.23, 6.4.25, 6.4.27, 6.4.29, 6.4.31, 6.4.33, 6.4.35, 6.4.37, 6.4.39, 6.4.43, 6.4.51, 6.4.53, 6.4.55, 6.4.57, 6.4.65–72, 6.4.73, 6.4.79, 6.4.83, 6.4.85, 6.4.89, 6.4.91, 6.4.93, 6.4.95, 6.4.97, 6.4.99, 6.4.101, 6.4.103, 6.4.105, 6.4.107, 6.4.109, 6.4.111, 6.4.119, 6.4.129, 6.4.131.

- Reading:
- Properties of logarithms:
- Reading:
- Section 6.5 (pages 465–471) from the textbook;
- My online notes on laws of logarithms.

- Exercises due on April 11 Tuesday (submit these here on Canvas):
Fill in the blanks
to break down these expressions using properties of logarithms.
(Assume that
*b*,*u*, and*v*are all positive and that*b*≠ 1.)- log
_{b}(*u**v*) = ___. - log
_{b}(*u*/*v*) = ___. - log
_{b}(*u*^{x}) = ___.

- log
- Exercises from the textbook due on April 12 Wednesday (submit these through MyLab in the Next item): 6.5.7, 6.5.11, 6.5.13, 6.5.15, 6.5.17, 6.5.19, 6.5.21, 6.5.23, 6.5.25, 6.5.27, 6.5.37, 6.5.39, 6.5.41, 6.5.43, 6.5.45, 6.5.47, 6.5.49, 6.5.51, 6.5.53, 6.5.55, 6.5.57, 6.5.61, 6.5.63, 6.5.65, 6.5.67, 6.5.69, 6.5.71, 6.5.73, 6.5.75, 6.5.78, 6.5.87, 6.5.91, 6.5.97.

- Reading:
- Logarithmic equations:
- Reading: Section 6.6 (pages 474–478) from the textbook.
- Exercises due on April 12 Wednesday (submit these here on Canvas):
In solving which of the following equations
would it be useful to have a step
in which you take logarithms of both sides of the equation?
(Say Yes or No for each one.)
- log
_{2}(*x*+ 3) = 5. - (
*x*+ 3)^{2}= 5. - 2
^{x+3}= 5.

- log
- Exercises from the textbook due on April 13 Thursday (submit these through MyLab in the Next item): 6.6.1, 6.6.2, 6.6.5, 6.6.7, 6.6.9, 6.6.15, 6.6.19, 6.6.21, 6.6.23, 6.6.25, 6.6.27, 6.6.29, 6.6.31, 6.6.39, 6.6.43, 6.6.45, 6.6.49, 6.6.57, 6.6.61.

- Compound interest:
- Reading:
- Section 6.7 (pages 481–487) from the textbook;
- My online notes on compound interest.

- Exercises due on April 13 Thursday (submit these here on Canvas):
- The original amount of money that earns interest is the _____.
- If you borrow
*P*dollars at 100*r*% annual interest compounded*n*times per year, then how much will you owe after*t*years (if you make no payments)?

- Exercises from the textbook due on April 14 Friday (submit these through MyLab in the Next item): 6.7.1, 6.7.2, 6.7.7, 6.7.11, 6.7.13, 6.7.15, 6.7.21, 6.7.31, 6.7.33, 6.7.41, 6.7.43.

- Reading:
- Applications of logarithms:
- Reading:
- Section 6.8 (pages 478–485) from the textbook;
- My online notes on applications of logarithms.

- Exercise due on April 18 Tuesday (submit this here on Canvas):
Suppose that a quantity
*A*undergoes exponential growth with a relative growth rate of*k*and an initial value of*A*_{0}at time*t*= 0. Write down a formula for the value of*A*as a function of the time*t*. - Exercises from the textbook due on April 19 Wednesday (submit these through MyLab in the Next item): 6.8.1, 6.8.3, 6.8.5, 6.8.7, 6.8.9, 6.8.11, 6.8.13, 6.8.15, 6.8.17, 6.8.19, 6.8.21, 6.8.23.

- Reading:
- Power functions:
- Reading: Section 5.1 through Objective 2 (pages 331–336) from the textbook.
- Exercises due on April 19 Wednesday (submit these here on Canvas):
Give the coordinates of:
- A point on the graph of every power function;
- Another point (different from the answer to the previous exercise) on the graph of every power function with a positive exponent;
- Another point on the graph of every power function with an even exponent; and
- Another point on the graph of every power function with an odd exponent.

- Exercises from the textbook due on April 20 Thursday (submit these through MyLab in the Next item): 5.1.2, 5.1.15, 5.1.17, 5.1.19, 5.1.21, 5.1.27, 5.1.29, 5.1.33.

- Graphing polynomials:
- Reading:
- The rest of Section 5.1 (pages 336–342) from the textbook;
- My online notes on graphing polynomials (but the last paragraph is optional);
- Section 5.2 Objective 1 (pages 346–348) from the textbook.

- Exercises due on April 20 Thursday (submit these here on Canvas):
- If a root (aka zero) of a polynomial function has odd multiplicity, then does the graph cross (go through) or only touch (bounce off) the horizontal axis at the intercept given by that root? Which does the graph do if the root has even multiplicity?
- If the leading coefficient of a polynomial function is positive then does the graph's end behaviour go up on the far right, or down? Which does the graph do if the leading coefficient is negative?

- Exercises from the textbook due on April 21 Friday (submit these through MyLab in the Next item): 5.1.1, 5.1.2, 5.1.11, 5.1.15, 5.1.17, 5.1.19, 5.1.21, 5.1.27, 5.1.29, 5.1.33, 5.1.41, 5.1.43, 5.1.47, 5.1.49, 5.1.59, 5.1.61, 5.1.69, 5.1.71, 5.1.73, 5.1.75, 5.2.1, 5.2.2, 5.2.5, 5.2.11.

- Reading:
- Advanced factoring:
- Reading:
- Section R.6 (pages 57–60) from the textbook;
- Section 5.6 through Objective 1 (pages 387–390) from the textbook;
- Section 5.6 Objectives 3–5 (pages 391–395) from the textbook.

- Exercises due on April 21 Friday (submit these here on Canvas):
- Suppose that
*f*is a polynomial function and*c*is a number. If you divide*f*(*x*) by*x*−*c*, then what will the remainder be? - Suppose that
*f*is a polynomial function with rational coefficients and*c*is an integer. If*x*−*c*is a factor of*f*(*x*), then what is*f*(*c*)?

- Suppose that
- Exercises from the textbook due on April 24 Monday (submit these through MyLab in the Next item): 5.6.2, 5.6.3, 5.6.4, 5.6.11, 5.6.15, 5.6.19, 5.6.33, 5.6.35, 5.6.37, 5.6.45, 5.6.51, 5.6.53, 5.6.57, 5.6.59, 5.6.65, 5.6.67, 5.6.93, 5.6.99, 5.6.101.

- Reading:
- Imaginary roots:
- Reading: Section 5.7 (pages 401–406) from the textbook.
- Exercises due on April 24 Monday (submit these here on Canvas):
Suppose that
*f*is a polynomial function with real coefficients,*a*and*b*are real numbers with*b*≠ 0, and the complex number*a*+*b*i is a root (aka zero) of*f*.- What other complex number must be a root of
*f*? - What polynomial in
*x*(with*real*coefficients) must be a factor of*f*(*x*)?

- What other complex number must be a root of
- Exercises from the textbook due on April 25 Tuesday (submit these through MyLab in the Next item): 5.7.1, 5.7.2, 5.7.9, 5.7.11, 5.7.13, 5.7.15, 5.7.17, 5.7.19, 5.7.21, 5.7.23, 5.7.25, 5.7.29, 5.7.35, 5.7.39.

- Rational functions and asymptotes:
- Reading:
- Section 5.3 (pages 354–361) from the textbook;
- My online notes on rational functions.

- Exercises due on April 25 Tuesday (submit these here on Canvas):
- If a graph gets arbitrarily close to a line (without necessarily reaching it) in some direction, then the line is a(n) _____ of the graph.
- Suppose that when you divide
*R*(*x*) =*P*(*x*)/*Q*(*x*), you get a linear quotient*q*(*x*) and a linear remainder*r*(*x*). Write an equation in*x*and*y*for the non-vertical linear asymptote of the graph of*R*. (Warning: Don't mix up lowercase and uppercase letters in your answer!)

- Exercises from the textbook due on April 26 Wednesday (submit these through MyLab in the Next item): 5.3.2, 5.3.3, 5.3.4, 5.3.15, 5.3.17, 5.3.19, 5.3.23, 5.3.27, 5.3.29, 5.3.31, 5.3.35, 5.3.45, 5.3.47, 5.3.49, 5.3.51.

- Reading:
- Graphs of rational functions:
- Reading: Section 5.4 (pages 365–375) from the textbook.
- Exercises due on April 26 Wednesday (submit these here on Canvas):
- If the reduced form of a rational function is defined somewhere where the original (unreduced) form is not, then the graph of the original function has a(n) _____ there.
- Suppose that when you divide
*R*(*x*) =*P*(*x*)/*Q*(*x*), you get a linear quotient*q*(*x*) and a linear remainder*r*(*x*). Write an equation in*x*that you might solve to find where the graph of*R*crosses its non-vertical linear asymptote. (Warning: Don't mix up lowercase and uppercase letters in your answer!)

- Exercises from the textbook due on April 27 Thursday (submit these through MyLab in the Next item): 5.4.1, 5.4.5, 5.4.7, 5.4.9, 5.4.11, 5.4.17, 5.4.19, 5.4.21, 5.4.23, 5.4.31, 5.4.33, 5.4.35, 5.4.51, 5.4.53.

- Inequalities:
- Reading:
- Section 5.5 (pages 380–384) from the textbook;
- My online notes on solving inequalities.

- Exercise due on April 27 Thursday (submit this here on Canvas):
Suppose that you have
a rational inequality in one variable that you wish to solve.
You investigate the inequality and discover the following facts about it:
- the left-hand side is always defined;
- the right-hand side
is undefined when
*x*is 2 but is otherwise defined; - the left-hand side and right-hand side
are equal when
*x*is −3/2 and only then; - the original inequality
is true when
*x*is −3/2 or 3 but false when*x*is −2 or 0.

- Exercises from the textbook due on April 28 Friday (submit these through MyLab in the Next item): 5.5.1, 5.5.5, 5.5.7, 5.5.9, 5.5.13, 5.5.15, 5.5.19, 5.5.21, 5.5.23, 5.5.27, 5.5.29, 5.5.35, 5.5.39, 5.5.41, 5.5.43, 5.5.47.

- Reading:

- Graphs and functions:
- Date available: March 24 Friday.
- Date due: March 26 Sunday (before 9:00 CST on Monday).
- Corresponding problem sets: 1–7.
- Help allowed: Your notes, calculator.
- NOT allowed: Textbook, my notes, other people, websites, etc.

- Properties and types of functions:
- Date available: April 14 Friday.
- Date due: April 16 Sunday (before 9:00 CST on Monday).
- Corresponding problem sets: 8–16.
- Help allowed: Your notes, calculator.
- NOT allowed: Textbook, my notes, other people, websites, etc.

- Logarithms and polynomials:
- Date available: April 28 Friday.
- Date due: April 30 Sunday (before 9:00 CST on Monday).
- Corresponding problem sets: 17–29.
- Help allowed: Your notes, calculator.
- NOT allowed: Textbook, my notes, other people, websites, etc.

For the exam, you may use *one sheet of notes* that you wrote yourself;
please take a scan or a picture of this (both sides)
and submit it here on Canvas.
However, you may not use your book or anything else not written by you.
You certainly should not talk to other people!
Calculators are allowed (although you shouldn't really need one),
but not communication devices (like cell phones).

The exam consists of questions similar in style and content to those in the practice exam on MyLab. To take the practice exam (which counts as a Problem Set in your grade), hit Next in the bottom right corner (now available). (The first question on the practice exam is a placeholder question that won't count toward your grade.)

The final exam will be * proctored*.
If you have access to a computer with a webcam,
then you can schedule a time with me to take the exam in a Zoom meeting.
If you're near Lincoln,
then we can schedule a time for you to take the exam in person.
If you're near any of the three main SCC campuses
(Lincoln, Beatrice, Milford)
and available on a weekday,
then you can schedule the exam at one of the Testing Centers.
If none of these will work for you,
then contact me as soon as possible to make alternate arrangements.
To take the actual exam online,
hit Next twice (not available until scheduled).
(One of the questions on the final exam
is an obvious placeholder question that won't count toward your grade.)

This web page and the files linked from it (except for the official syllabus) were written by Toby Bartels, last edited on 2023 March 23. Toby reserves no legal rights to them.

The permanent URI of this web page
is
`http://tobybartels.name/MATH-1150/2023SP2/`

.