1 Let f be the function such that

$$
f(x)=2 x^{2}-3 x+1
$$

for every possible real number x. Find $f(3)$, showing at least one intermediate step.
I replace x everywhere by 3 :

$$
\begin{aligned}
& f(x)=2 x^{2}-3 x+1 \\
& f(3)=2(3)^{2}-3(3)+1=10
\end{aligned}
$$

2 Consider the equation

$$
x^{2}+y^{2}=1
$$

Is the point

$$
\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
$$

on the graph of this equation in the (x, y)-plane? Show what numerical calculation you make to decide. I replace x everywhere by $1 / 2$ and replace y everywhere by $\sqrt{3} / 2$:

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right) & =1 \\
1 & =1
\end{aligned}
$$

This is true, so the answer is yes.
3 Let f be the function such that

$$
f(x)=3(x+1)^{3}-2
$$

for every possible real number x, and similarly let g satisfy

$$
g(x)=x^{3} .
$$

Below in blue is a graph of g. Using this as a guide, draw a graph of f on the same plane. To show your work, mark and label at least three points on the graph.
The original graph of g had marked the points $(0,0),(1,1)$, and $(-1,-1)$. Each point is transformed to the left by 1 , to 3 times the height or depth, and then down by 2 . This moves them, respectively, to $(-1,-2)$, $(0,1)$, and $(-2,-5)$. So the graph of f has these three points; and furthermore, the kink where the graph of g flattened out for an instant at $(0,0)$ becomes a kink where the graph of f flattens out for an instant at $(-1,-2)$. So the graph is below in purple.

